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1 Introduction

The zero knowledge proofs in Verificatum mix-net (VMN) can be made non-interactive using the
Fiat-Shamir heuristic [5] and this is also the default behavior. These proofs end up in a special
proof directory along with all intermediate results published on the bulletin board during the ex-
ecution. The proofs and the intermediate results allows anybody to verify the correctness of the
execution as a whole, i.e., that the joint public key, the input ciphertexts, and the output plain-
texts/ciphertexts are related as defined by the protocol and the public parameters of the execution.
The goal of this document is to give a detailed description of how to implement an algorithm for
verifying the complete contents of the proof directory.

VMN can be used as a blackbox to: generate a joint public key for which the secret key is
verifiably secret shared among the mix-servers, re-encrypt and permute a list of ciphertexts (shuffle
session), decrypt a list of ciphertexts (decryption session), or re-encrypt, decrypt and permute a
list of ciphertexts (mixing session).

Accordingly, there are three types of proofs, but the proof of a mixing session essentially
consists of a shuffle proof and a decryption proof except for how some files are named.

2 Background

Before we delve into the details of how to implement a verifier, we recall the El Gamal cryptosys-
tem and briefly describe the mix-net implemented in VMN (in the case where the Fiat-Shamir
heuristic is applied).

2.1 El Gamal Cryptosystem

The El Gamal cryptosystem [3] is defined over a groupGq of prime order q with standard generator
g. The setM of plaintexts is defined to be the group Gq and the set of ciphertexts C is the product
spaceM ˆM. The randomness used to encrypt is sampled fromR “ Zq.

A secret key x P R is sampled randomly, and a corresponding public key pk “ pg, yq is
defined by y “ gx. To encrypt a plaintext m PM, a random exponent s P R is chosen and the
ciphertext in C is computed as Encpk pm, sq “ pgs, ysmq. A plaintext can then be recovered from
such a ciphertext pu, vq as Decxpu, vq “ u´xv “ m.

To encrypt an arbitrary string of bounded length t we also need an injection t0, 1ut Ñ M,
which can be efficiently computed and inverted.

Homomorphic. The cryptosystem is homomorphic, i.e., for every public key pk and every ci-
phertexts

pu1, v1q “ Encpk pm1, s1q and pu2, v2q “ Encpk pm2, s2q

their element-wise product

pu1u2, v1v2q “ Encpk pm1m2, s1 ` s2q

is an encryption of m1m2. If we set m2 “ 1, then this feature can be used to re-encrypt pu1, v1q

without knowledge of the randomness. To see this, note that for every fixed s1 and random s2, the
sum s1 ` s2 is randomly distributed inR.
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Distributed El Gamal Cryptosystem. The El Gamal cryptosystem also allows efficient pro-
tocols for distributed key generation and distributed decryption of ciphertexts by k parties with
threshold λ, i.e., λ parties are needed to decrypt.

The distributed key generation protocol generates a standard Shamir secret sharing polynomial
ppzq “

řλ´1
s“0 γsz

s of degree pλ ´ 1q defined over R. The joint output of the protocol is then a
polynomial in the exponent pΓ0, . . . ,Γλ´1q defined by Γs “ gγs and the secret output xl to the lth
party is defined as the secret share xl “ pplq. The joint public key is then y “ Γ0 “ gx, where
x “ pp0q, and the public key yl of the lth party can be derived as yl “

śλ´1
s“0 Γl

s

s “ gxl . The
details [4, 6] of the verifiable secret sharing scheme are not important in this document.

To jointly decrypt a ciphertext pu, vq, the lth party publishes a partial decryption factor fl
computed as PDecxlpu, vq “ u´xl and proves using a zero-knowledge proof that it computed the
decryption factor correctly relative to its public key yl. Let ∆ be a set of size λ of indices l such
that the proofs are correct. Then Lagrange coefficients

cl “
ź

iP∆ztlu

i

i´ l

such that
ř

lP∆ clxl “ x can be computed. Instead of recovering x in the open we can perform
similar operations “in the exponent”. More precisely, decryption factors can be combined to a
joint decryption factor

f “
ź

lP∆

f cll “ PDecxpu, vq .

The ciphertext can then be trivially decrypted as TDecppu, vq, fq “ vf “ m. If no set ∆ of size
λ exists, then no knowledge about the plaintext is leaked and the ciphertexts can not be decrypted.

Encrypting longer messages with multiple keys. The El Gamal cryptosystem can be gener-
alized in several ways to encrypt longer messages. One way is to simply use multiple public
keys. More precisely, suppose that pk “ ppk1, . . . , pkκq is a list of public keys with corre-
sponding secret keys sk “ psk1, . . . , skκq, where pk i P C and sk i P R. Then a message
m “ pm1, . . . ,mκq PMκ can be encrypted as

Encpk pm, sq “
`

Encpk1
pm1, s1q, . . . ,Encpkκpmκ, sκq

˘

,

where s P Rκ. We view this as the natural generalization of El Gamal to product groups. We say
that κ is the key width and define the message space to beMκ “Mκ, the randomness space to
beRκ “ Rκ, and the ciphertext space to be Cκ “Mκ ˆMκ.

Let gM PM be a generator. Then the element g “ pgM , gM , . . . , gMq generatesMκ in the
sense that for each element u PMκ there is a unique vector s P Rκ such that u “ pgs1M , . . . , gsκMq.
We use the following notation

gs “ gps1,...,sκq “ pgs1M , . . . , gsκMq ,

i.e., exponentiation is interpreted component wise.
With this notation, a secret key sk for El Gamal with key width κ is a randomly chosen ele-

ment x P Rκ and the corresponding public key pk is defined as pg, yq, where y “ gx. To encrypt
a message m P Mκ an element s P Rκ is sampled randomly and then the ciphertext is com-
puted as Encpk pm, sq “ pgs, ysmq, where ysm is interpreted as component-wise multiplication.
Decryption and computation of decryption factors is defined similarly.
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Encrypting longer messages with multiple ciphertexts. Using a simple hybrid argument it is
easy to see that a longer plaintext m “ pm1, . . . ,mωq PMω

κ can be encrypted using a public key
pk P Cκ by encrypting each component independently, as

`

Encpk pm1, s1q, . . . ,Encpk pmω, sωq
˘

,
where s “ ps1, . . . , sωq P Rωκ is chosen randomly.

It is convenient to generalize our notation similarly to the generalization used for multiple keys
above. Thus, we letMκ,ω “Mω

κ be the plaintext space, we let Rκ,ω “ Rωκ be the randomness
space, and let Cκ,ω “ Mκ,ω ˆMκ,ω be the ciphertext space. With this notation, encryption of
a message m PMκ,ω using randomness s P Rκ,ω is simply denoted Encpk pm, sq “ pgs, ysmq,
where g is understood to be a generator ofMκ.

Please note that with this generalization pk P Cκ and not in Cκ,ω which might have been
expected by the reader, but this is natural since the ω is variable even for a fixed public key.
Decryption and computation of decryption factors can be defined in the natural way.

2.2 Mix-Net Based on the El Gamal Cryptosystem

We use the re-encryption approach of Sako and Kilian [10] and the proof of a shuffle of Terelius
and Wikström [11]. The choice of proof of a shuffle is mainly motivated by the fact that many
other efficient proofs of shuffles are harder to understand and implement. Some of them are
also patented. We use the batching technique of Bellare et al. [1] with a twist to speed up the
proofs needed during distributed decryption. Optionally the pre-computation technique proposed
by Wikström [12] is used. The mix-net is executed by k mix-servers with key width κ and width
of ciphertexts ω.

Distributed key generation. Let g be a generator ofMκ. The mix-servers first run a distributed
key generation protocol for a key width of κ. This generates a Shamir secret sharing polynomial
ppzq “

řλ´1
s“0 γsz

s where γs P Rκ. Then a polynomial in the exponent pΓ0, . . . ,Γλ´1q is defined
by Γs “ gγs . Note that these elements belong toMκ. From these values a secret key x “ pp0q in
Rκ (that is never recovered) and a (partial) public key y “ gx “ Γ0 are defined. The full public
key is then the pair pk “ pg, yq. Finally, each party receives a secret share xl “ pplq in Rκ for
which a corresponding public key yl can be derived as yl “

śλ´1
s“0 Γl

s

s .

Shuffling. We denote the number of ciphertexts of width ω by N . The ith ciphertext w0,i “

Encpk pmi, siq from the set Cκ,ω encrypts some messagemi PMκ,ω using randomness si P Rκ,ω.
To avoid Pfitzmann’s attack [9] and preserve privacy, the sender of a ciphertext must prove

knowledge of its plaintext. This can be ensured in different ways, but it is of no concern in this
document. Furthermore, in some applications of mix-nets, the content of all input ciphertexts may
be known and the randomness replaced by a public constant. However, with proper inputs the
proof of correctness does not only guarantee the correctness of an execution, it also guarantees
privacy regarding the correspondence between inputs and outputs, under the assumption that at
most λ´ 1 mix-servers are corrupted.

Recall that a non-interactive proof allows a prover to convince a verifier that a given statement
is true by sending a single message. The verifier then either accepts the proof as valid or rejects
it as invalid. In this context a proof is said to be zero-knowledge if, loosely, it does not reveal
anything about the witness of the statement known by the prover.

VMN allows deactivating some mix-servers, i.e., they are treated as if they output a fixed
message for any request. To ensure that at least λ active mix-servers are involved in the shuffling,
we need λa mix-servers to be involved in the shuffling, where λa is the smallest index such that
there are at least λ active mix-servers with index smaller or equal to λa. This guarantees that
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during processing at least one honest mix-server is involved in the shuffling, which in turn implies
that privacy is preserved.

The mix-servers form a list L0 “ pw0,0, . . . , w0,N´1q of all the input ciphertexts. Then the jth
mix-server proceeds as follows for l “ 1, . . . , λa:

• If l “ j, then it re-encrypts each ciphertext in Ll´1, permutes the resulting ciphertexts and
publishes them as a list Ll. More precisely, it chooses rl,i P Rκ,ω and a permutation πl
randomly and outputs Ll “ pwl,0, . . . , wl,N´1q, where

wl,i “ wl´1,πlpiqEncpk p1, rl,πlpiqq . (1)

Then it publishes a non-interactive zero-knowledge proof of knowledge ξl of all the rl,i P
Rκ,ω and πl and that they satisfy (1).

• If l ‰ j, then it waits until the lth mix-server publishes Ll and a non-interactive zero-
knowledge proof of knowledge ξl. The proof is verified and if it is rejected, then Ll is set
equal to Ll´1. (Note that this happens for every deactivated mix-server.)

Decryption. Finally, the mix-servers jointly decrypt the ciphertexts in Lλa as described in Sec-
tion 2.1, but with a twist. More precisely, the lth mix-server computes fl “ PDecxl{αpLλaq, where

α “
`

lcmp1, . . . , kq
˘2 is the square of the least common multiple of the integers 1, 2, . . . , k. Then

it proves that the secret key xl it used is given by yl “ gxl . Let ∆ be a set of size λ of indices l
such that the proofs are correct. Then the decryption factor can be computed as

f “
ź

lP∆

fαcll “ PDecxpLλaq ,

where

cl “
ź

iP∆ztlu

i

i´ l

is the lth Lagrange coefficient and the output of the mix-net is computed as TDecpLλa , fq. Note
that we introduce α when computing decryption factors of the parties and then cancel it when
combining the decryption factors. There is virtually no additional cost in computing α and xl{α
before computing the decryption factors of the lth party. The reason we introduce α is that αcl
is a relatively small integer if k is not too large. This reduces the complexity of computing f
drastically, since no full exponentiations are needed to combine the decryption factors for practical
values of k.

2.3 Outline of the Verification Algorithm

We give a brief outline of the verification algorithm that checks that the intermediate results of an
execution and all the zero-knowledge proofs are consistent.

1. Shuffling. For l “ 1, . . . , λa: if ξl is not a valid proof of knowledge of exponents rl,i and a
permutation πl such that wl,i “ wl´1,πlpiqEncpk p1, rl,πlpiqq, then set Ll “ Ll´1. If less than
λ proofs are valid, then reject.

2. Joint decryption. A set ∆ of size λ is read from the proof. Check that f “
ś

lP∆ f
αcl
l “

PDecxpLλaq by combining and checking the individual proofs of the mix-servers. If this
does not give a joint valid proof, then reject.

3. Check output. Check if the output of the mix-net equals TDecpLλa , fq if both are sorted
lexicographically. If not, then reject and otherwise accept.
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2.4 Alternative Usage of the Mix-Net

The mix-net can also be used to shuffle ciphertexts without decrypting them, i.e., the ciphertexts
are only re-randomized and permuted. Alternatively, it can be used to decrypt without performing
any re-randomization or permutation. These modes generate proofs that correspond to a subset of
the phases described above.

3 How to Write a Verifier

To turn the outline of the verification algorithm in Section 2.3 into an actual verification algorithm,
we must specify: all the parameters of the execution, the representations of all arithmetic objects,
the zero-knowledge proofs, and how the Fiat-Shamir heuristic is applied.

3.1 List of Manageable Sub-tasks

We divide the problem into a number of more manageable sub-tasks and indicate their dependen-
cies.

1. Byte Trees. All of the mathematical and cryptographic objects are represented as so called
byte trees. Section 4 describes this simple and language-independent byte-oriented format.

2. Cryptographic Primitives. We need concrete implementations of hash functions, pseudo-
random generators, and random oracles, and we must define how these objects are repre-
sented. This is described in Section 5.

3. Arithmetic Library. An arithmetic library is needed to compute with algebraic objects,
e.g., group elements and field elements. These objects also need to be converted to and
from their representations as byte trees. Section 6 describes how this is done.

4. Protocol Info Files. Some of the protocol parameters, e.g., auxiliary security parameters,
must be extracted from an XML encoded protocol info file before any verification can take
place. Section 7 describes the format of this file and which parameters must be extracted.

5. Verifying Fiat-Shamir Proofs. Section 8 explains in detail how to implement these tests.

6. Verification of a Complete Execution. Section 9 combines all of the above steps into a
single verification algorithm.

3.2 How to Divide the Work

Step 1 does not depend on any other step. Step 2 and Step 3 are independent of the other steps
except for how objects are encoded to and from their representation as byte trees. Step 4 can be
divided into the problem of parsing an XML file and then interpreting the data stored in each XML
block. The first part is independent of all other steps, and the second part depends on Step 1, Step 2
and Step 3. Step 5 depends on Step 1, Step 2, and Step 3, but not on Step 4, and it may internally
be divided into separate tasks. Step 6 depends on all previous steps.

3.3 Level of Independence of Verifiers

VMN is implemented in Java with some native code written in C based on the GMP [7] library
and shell script wrappers. Thus, the code is compiled using Java and C compilers and executed

5



using a Java virtual machine, native libraries from GMP, and shell scripts. Furthermore, all of it is
executed within an operating system on a given hardware.

It may seem paranoid, but at each level it is conceivable that an attacker can covertly modify
the code of VMN such that the built-in verifier in VMN accepts an invalid proof for a mix-net
session that produces incorrect output.

Thus, the goal of an implementor of an independent verifier should be to minimize the com-
mon dependencies with VMN, i.e., the verifier should preferably be implemented using other
languages, libraries, operating system, and hardware.

To see why this is important, consider, e.g., that at the core of any verifier it is checked that
large integers are equal. It is conceivable that an adversary could inject code that alters the behavior
of both VMN and all verifiers (built-in and external) in a correlated way such that the output of
the mix-net is incorrect, the proof is incorrect, but still the verifiers accept the proof. This could
possibly be done by introducing special random patterns to signal to the injected code snippets to
be activated.

4 Byte Trees

We use a byte-oriented format to represent objects on file and to turn them into arrays of bytes.
The goal of this format is to be as simple as possible.

4.1 Definition

A byte tree is either a leaf containing an array of bytes, or a node containing other byte trees. We
write leaf(d) for a leaf with a byte array d and we write node(b1, . . . , bl) for a node with children
b1, . . . , bl. Complex byte trees are then easy to describe.

Example 1. The byte tree containing the data AF, 03E1, and 2D52 (written in hexadecimal) in
three leaves, where the first two leaves are siblings, but the third is not, is

nodepnodepleafpAFq, leafp03E1qq, leafp2D52qq .

4.2 Representation as an Array of Bytes

We use byteskpnq as a short-hand to denote the 8k-bit two’s-complement representation of n in
big endian byte order, where n is given in decimal notation. We also use hexadecimal notation for
constants, e.g., 0A means bytes1p10q. A byte tree is represented by an array of bytes as follows.

• A leaf leafpdq is represented by the concatenation of: a single byte 01 to indicate that it is
a leaf, four bytes bytes4plq, where l is the number of bytes in d, and the data bytes d.

• A node nodepb1, . . . , blq is represented by the concatenation of: a single byte 00 to in-
dicate that it is a node, four bytes bytes4plq representing the number of children l, and
bytespb1q | bytespb2q | ¨ ¨ ¨ | bytespblq, where | denotes concatenation and bytespbiq de-
notes the representation of the byte tree bi as an array of bytes.

Example 2 (Example 1 contd.). The byte tree is represented as the following array of bytes.

00 00000002

00 00000002

01 00000001 AF

01 00000002 03E1

01 00000002 2D52
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4.3 ASCII Strings

ASCII strings are identified with the corresponding byte arrays. No ending symbol is used to
indicate the length of the string, since the length of the string is stored in the leaf.

Example 3. The string "ABCD" is represented by leafp65666768q.

4.4 Hexadecimal Encodings

Sometimes we store byte trees as the hexadecimal encoding of their representation as an array
of bytes. We denote by hexpaq the hexadecimal encoding of an array of bytes a. We denote by
unhexpsq the reverse operation that converts an ASCII string s of an even number of digits 0-9
and A-F into the corresponding array of bytes.

5 Cryptographic Primitives

For our cryptographic library we need hash functions and pseudo-random generators, and random
oracles derived from these.

5.1 Hash Functions

VMN allows an arbitrary hash function to be used, but in this document we restrict our attention
to the SHA-2 family [8], i.e., SHA-256, SHA-384, and SHA-512. Future versions of VMN will
allow usage of SHA-3 (Keccak) as well. We use the following notation.

• Hashfunctionpsq – Creates a hash function where s is one of the strings "SHA-256",
"SHA-384", or "SHA-512".

• Hpdq – Denotes the hash digest of the byte array d using the hash function H . We some-
times abuse notation and simply write Hptq for a byte tree t meaning Hpbq, where b is the
representation of t as an array of bytes.

• outlenpHq – Denotes the number of bits in the output of the hash function H . This is
assumed to be a multiple of 8.

Example 4. If H “ Hashfunctionp"SHA-256"q and t is a byte tree then Hptq denotes the hash
digest of the array of bytes representing the byte tree as computed by SHA-256, and outlenpHq
equals 256.

5.2 Pseudo-random Generators

We need a pseudo-random generator (PRG) to expand a short challenge string into a long “ran-
dom” vector to use batching techniques in the zero-knowledge proofs of Section 8. VMN allows
any pseudo-random generator to be used, but in the random oracle model there is no need to use a
provably secure PRG based on complexity assumptions. We consider a simple construction based
on a hash function H .

The PRG takes a seed s of nH “ outlenpHq bits as input. Then it generates a sequence of
bytes r0 | r1 | r2 | ¨ ¨ ¨ , where | denotes concatenation and ri is an array of nH{8 bytes defined by

ri “ Hps | bytes4piqq

for i “ 0, 1, . . . , 231´1, i.e., in each iteration we hash the concatenation of the seed and a positive
integer counter (four bytes). It is not hard to see that if Hps | ¨q is a pseudo-random function

7



for a random choice of the seed s, then this is a provably secure construction of a pseudo-random
generator. We use the following notation.

• PRGpHq – Creates an unseeded instance PRG from a hash function H .

• seedlenpPRGq – Denotes the number of seed bits needed as input by PRG .

• PRGpsq – Denotes an array of pseudo-random bytes derived from the seed s. Strictly
speaking this array is 231nH bits long, but we abuse notation and simply write pt0, . . . , tlq “
PRGpsq, where each ti is of a given bit length, instead of explicitly saying that we iterate
the construction a suitable number of times and then truncate to the exact output length we
want.

Appendix A contains test vectors for this pseudo-random generator.

5.3 Random Oracles

We need a flexible random oracle that allows us to derive any number of bits. We use a construction
based on a hash function H . To differentiate the random oracles with different output lengths, the
output length is used as a prefix in the input to the hash function. The random oracle first constructs
a pseudo-random generator PRG “ PRGpHq which is used to expand the input to the requested
number of bits. To evaluate the random oracle on input d the random oracle then proceeds as
follows, where nout is the output length in bits.

1. Compute s “ Hpbytes4pnoutq | dq, i.e., compress the concatenation of the output length
and the actual data to produce a seed s.

2. Let a be the rnout{8s first bytes in the output of PRGpsq.

3. If nout mod 8 ‰ 0, then set the 8 ´ pnout mod 8q first bits of a to zero, and output the
result.

We remark that setting some of the first bits of the output to zero to emulate an output of arbitrary
bit length is convenient in our setting, since it allows the outputs to be directly interpreted as
random positive integers of a given (nominal) bit length.

This construction is a secure implementation of a random oracle with output length nout for
any nout ă 231outlenpHq when H is modeled as a random oracle and the PRG of Section 5.2 is
used. Note that it is unlikely to be a secure implementation if a different PRG is used. We use the
following notation:

• RandomOraclepH,noutq – Creates a random oracle RO with output length nout from the
hash function H .

• ROpdq – Denotes the output of the random oracle RO on an input byte array d.

6 Representations of Arithmetic Objects

Every arithmetic object in VMN is represented as a byte tree. In this section we pin down the
details of these representations. We describe how to represent elements in product rings and
product groups, as well as arrays of such elements. These products are basically lists of elements
and operations are applied element wise.
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6.1 Basic Objects

Integers. A multi-precision integer n is represented by leafpbyteskpnqq for the smallest possible
integer k.
Example 5. 263 is represented by 01 00000002 0107.
Example 6. ´263 is represented by 01 00000002 FEF9.

Arrays of booleans. An array pa1, . . . , alq of booleans is represented as leafpbq, where b is an
array pb1, . . . , blq of bytes where bi equals 01 if ai is true and 00 otherwise.
Example 7. The array ptrue, false, trueq is represented by leafp010001q.
Example 8. The array ptrue, true, falseq is represented by leafp010100q.

6.2 Prime Order Fields

Field element. An element a in a prime order field Zq is represented by leafpbyteskpaqq, where
a is identified with its integer representative in r0, q´ 1s and k is the smallest possible k such that
q can be represented as byteskpqq. In other words, field elements are represented using fixed size
byte trees, where the fixed size only depends on the order of the field.
Example 9. 258 P Z263 is represented by 01 00000002 0102.
Example 10. 5 P Z263 is represented by 01 00000002 0005.

Array of field elements. An array pa1, . . . , alq of field elements is represented by a byte tree
nodepa1, . . . , alq, where ai is the byte tree representation of ai.
Example 11. The array p1, 2, 3q of elements in Z263 is represented by:

00 00000003

01 00000002 0001

01 00000002 0002

01 00000002 0003

6.3 Product Rings

Product ring element. An element a “ pa1, . . . , akq in a product ring is represented by a byte
tree nodepa1, . . . , akq, where ai is the byte tree representation of the component ai. Note that this
representation keeps information about the order in which a product group is formed intact (see
the second example below).
Example 12. The element p258, 5q P Z263 ˆ Z263 is represented by:

00 00000002

01 00000002 0102

01 00000002 0005

Example 13. The element pp258, 6q, 5q P pZ263 ˆ Z263q ˆ Z263 is represented by:

00 00000002

00 00000002

01 00000002 0102

01 00000002 0006

01 00000002 0005

9



Array of product ring elements. An array pa1, . . . , alq of elements in a product ring where
ai “ pai,1, . . . , ai,kq, is represented by nodepb1, . . . , bkq, where bi is the array pa1,i, . . . , al,iq and
bi is its representation as a byte tree.

Thus, the structure of the representation of an array of ring elements mirrors the representation
of a single ring element. This seemingly contrived representation turns out to be convenient in
implementations.

Example 14. The array
`

p1, 4q, p2, 5q, p3, 6q
˘

of elements in Z263 ˆ Z263 is represented as

00 00000002

00 00000003

01 00000002 0001

01 00000002 0002

01 00000002 0003

00 00000003

01 00000002 0004

01 00000002 0005

01 00000002 0006

6.4 Multiplicative Groups Modulo Primes

Group. A subgroup Gq of prime order q of the multiplicative group Z˚p , where p ą 3 is prime,
with standard generator g is represented by the byte tree

nodepp, q, g,bytes4peqq ,

where the integer e encoded as four bytes determines how a string is encoded into a group element
and can be ignored for the purpose of this document. We stress that g is the byte tree representation
of g viewed as a group element as defined below.

Group element. An element a P Gq, where Gq is a subgroup of prime order q of Z˚p for a
prime p is represented by leafpbyteskpaqq, where a is identified with its integer representative in
r0, p´ 1s and k is the smallest integer such that p can be represented as byteskppq.

Example 15. Let Gq be the subgroup of order q “ 131 in Z˚263. Then 258 P Gq is represented by
01 00000002 0102.

Example 16. Let Gq be the subgroup of order q “ 131 in Z˚263. Then 3 P Gq is represented by
01 00000002 0003.

6.5 Standard Elliptic Curves over Prime Order Fields

Group. A standard elliptic curve group named FooCurve is represented by the byte tree
leafp"FooCurve"q.

Example 17. The group P-256 from FIPS 186-3 [2] is represented by leafp"P-256"q.

The following curves are currently implemented by VMN, each defining the order of the underly-
ing field, the curve equation, the order of the group, and the standard generator.
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P-192 brainpoolp192r1 prime192v1 secp192k1
P-224 brainpoolp224r1 prime192v2 secp192r1
P-256 brainpoolp256r1 prime192v3 secp224k1
P-384 brainpoolp320r1 prime239v1 secp224r1
P-521 brainpoolp384r1 prime239v2 secp256k1

brainpoolp512r1 prime239v3 secp256r1
prime256v1 secp384r1

secp521r1

Group element. Let the curve be defined over a prime order field Zp and let k be the smallest
integer such that p can be represented as byteskppq. Then an affine point P “ px, yq on the curve
is represented by nodepleafpbyteskpxqq, leafpbyteskpyqqq and the point at infinity is represented
by nodepleafpbyteskp´1qq, leafpbyteskp´1qqq. Note that a fixed-size representation of ´1 is
used.

6.6 Arrays of Group Elements and Product Groups

Array of group elements. An array pa1, . . . , alq of group elements is represented by a byte tree
nodepa1, . . . , alq, where ai is the byte tree representation of ai.

Product group element. An element a “ pa1, . . . , akq in a product group is represented by
nodepa1, . . . , akq, where ai is the byte tree representation of ai.

Array of product group elements. An array pa1, . . . , alq of elements in a product group, where
ai “ pai,1, . . . , ai,kq, is represented by nodepb1, . . . , bkq, where bi is the array pa1,i, . . . , al,iq and
bi is its representation as a byte tree.

6.7 Marshalling Groups

When objects are converted to byte trees in VMN, they do not store the name of the Java class
of which they are instances. Thus, to recover an object from such a representation additional in-
formation must be available. Java serialization would not be language independent. Furthermore,
only a few objects must be converted, so we use a simplified scheme where a groupGq represented
by an instance of a Java class PGroupClass in VMN is marshalled into a byte tree

nodepleafp"PGroupClass"q, Gqq .

This byte tree in turn is converted into a byte array which is coded into hexadecimal and prepended
with an ASCII comment. The comment and the hexadecimal coding of the byte array are separated
by double colons. The resulting ASCII string is denoted by s “ marshalpGqq and the group Gq
recovered from s by removing the comment and colons, converting the hexadecimal string to a
byte array, converting the byte array into a byte tree, and converting the byte tree into a group Gq.
This is denoted by Gq “ unmarshalpsq.

Groups in VMN. Currently, there are two implementations of groups in VMN:

Implementation Description

com.verificatum.arithm.ModPGroup Multiplicative groups.

com.verificatum.arithm.ECqPGroup Standard elliptic curve groups over prime
order fields.
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Example 18. The standard NIST curve P-256 [2] is marshalled into

nodepleafp"com.verificatum.arithm.ECqPGroup"q, leafp"P-256"qq .

6.8 Deriving Group Elements from Random Strings

In Section 8.2 we need to derive group elements from the output of a pseudo-random generator
PRG . (Strictly speaking we use PRG as a random oracle here, but this is secure due to how it is
defined.) Exactly how this is done depends on the group and an auxiliary security parameter nr.
We denote this by

h “ ph0, . . . , hN 1´1q “ Gq.randomArraypN 1,PRGpsq, nrq

and describe how this is defined for each type of group below. The auxiliary security parameter nr
determines the statistical distance in distribution between a randomly chosen group element and
the element derived as explained below if we assume that the output of the PRG is truly random.

We stress that it must be infeasible to find a non-trivial representation of the unit of the group
in terms of these generators, i.e., it should be infeasible to find e, e0, . . . , eN 1´1, not all zero
modulo q, such that ge

śN 1´1
i“0 heii “ 1. (In particular, it is not acceptable to derive exponents

x0, . . . , xN 1´1 P Zq and then define hi “ gxi .)

Multiplicative group. Let Gq be the subgroup of prime order q of the multiplicative group Zp,
where p ą 3 is prime and q - pp´1q{q. Then an array ph0, . . . , hN 1´1q inGq is derived as follows
from a seed s.

1. Let np be the bit length of p.

2. Let pt0, . . . , tN 1´1q “ PRGpsq, where ti P t0, 1u8rpnp`nrq{8s is interpreted as a non-
negative integer.

3. Set t1i “ ti mod 2np`nr and let hi “ pt1iq
pp´1q{q mod p.

In other words, for each group element hi we first extract the minimum number of complete bytes
rpnp`nrq{8s. Then we reduce the number of bits to exactly np`nr. Finally, we map the resulting
integer into Gq using the canonical homomorphism ZÑ Gq.

This construction makes sense if one considers an implementation. It is natural to implement
a routine that derives an array of non-negative integers t1i of a given nominal bit length np ` nr
as explained above. An array of group elements is then derived from the array of non-negative
integers in the natural way by mapping the integers into Gq.

Elliptic curves over prime order fields. Let Gq be an elliptic curve of order q over a prime
order field Zp defined by an equation y2 “ fpxq mod p. Then an array ph0, . . . , hN 1´1q in Gq is
derived as follows from a seed s.

1. Let np be the bit length of p.

2. Let pt0, . . . , taq “ PRGpsq, where tl P t0, 1u8rpnp`nrq{8s is interpreted as a non-negative
integer.

3. Set t1l “ tl mod 2np`nr and let zl “ t1l mod p.

4. Then define points ph0, . . . , hN 1´1q “
`

px0, y0q, . . . , pxN 1´1, yN 1´1q
˘

as follows.

(a) Set j “ 0 and l “ 0.
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(b) Let i ě j be the smallest integer such that fpziq is a quadratic residue modulo p. Then
set j “ i` 1, xl “ zi, and l “ l ` 1.

(c) Let y be the square root of fpxlq that is smallest when viewed as an integer in r0, p´1s.
Then go to step 4b.

In other words, first we generate random positive integers in r0, 2np`nr ´ 1s. Then these integers
are reduced modulo p to get almost uniformly generated integers zi in r0, p´ 1s. Finally, we walk
through these integers until zi is the x-coordinate of a point on the curve. On average we expect
that roughly half of the values in Zp are x-coordinates of points on the curve, so this procedure is
efficient. Again, this is quite natural in an implementation and allows re-use of the implementation
of the functionality needed to implement the multiplicative group.

Note that the non-random choice of y-coordinate for a given x-coordinate does not make it
easier to find a non-trivial representation of the unit element, since the two roots correspond to
inverses as group elements.

7 Protocol Info Files

The protocol info file contains all the public parameters agreed on by the operators before the key
generation phase of the mix-net is executed, and some of these parameters must be extracted to
verify the correctness of an execution.

7.1 XML Grammar

A protocol info file uses UTF-8 encoding and a simple XML format and contains a single block
of the form <protocol></protocol>. The preamble of this block contains a number of global
parameters, e.g., the number k of parties in the protocol is given by a <nopart>k</nopart> block,
where k is represented in decimal, and the group over which the protocol is executed is defined by
a <pgroup>123ABC</pgroup> block, where 123ABC is either a hexadecimal encoding of a byte
tree representing the group, or the ASCII name of the group in the case of a named group.

After the global parameters follows a <party></party> block for each party that takes part in
the protocol, and each such block contains all the public information of that party, e.g., the name
of a party is given by a <name></name> block. The contents of the <party></party> blocks are
important during the execution of the protocol, but they are not used to verify the correctness of
an execution and can safely be ignored when implementing a verifier.

A parser of protocol info files must be implemented. If protInfo.xml is a protocol info
file, then we denote by D “ ProtocolInfopprotInfo.xmlq an object such that Drbs is the
data d stored in a block <b>d</b> in the preamble of the protocol info file, i.e., preceding any
<party></party> block. We stress that the data is stored as ASCII encoded strings.

Listing 1 gives a skeleton example of a protocol info file, but a complete example is given in
Listing C in Appendix C.

Listing B in Appendix B contains the formal XML schema for protocol info files, but this
schema depends on the type of bulletin board used, since different bulletin boards accept different
parameters. Thus, it is wise to ignore this schema and instead use a general XML parser of
well-formed documents and extract only the needed values. This works, since we do not use any
attributes of XML tags, i.e., all values are stored as data between an opening tag and a closing tag.

7.2 Extracted Values

To interpret a decimal ASCII string s as an integer we simply write intpsq, e.g., intp"123"q “ 123.
We letD “ ProtocolInfo(protInfo.xml) and define the values we later use in Section 8
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<protocol>

<name>Swedish Election</name>
<nopart>3</nopart>
<pgroup>123ABC</pgroup>
...

<party>
<name>Party1</name>
<pubkey>123ABC</pubkey>
...

</party>
...

</protocol>

Listing 1: Skeleton of a protocol info file. All values relevant to a verifier appear in the preamble.
There are no nested blocks within a <party></party> block.

and Section 9.

• versionprot “ Drversions is the version of VMN used during the execution which pro-
duced the proof.

• sid “ Drsids is the globally unique session identifier tied to the generation of a particular
joint public key by the mix-net.

• k “ intpDrnopartsq specifies the number of parties.

• λ “ intpDrthressq specifies the threshold number of mix-servers needed to decrypt ci-
phertexts.

• ne “ intpDrebitlenrosq specifies the number of bits in each component of random
vectors used for batching in proofs of shuffles and proofs of correct decryption.

• nr “ intpDrstatdistsq specifies the acceptable statistical error when sampling random
values. The precise meaning of this parameter is hard to describe. Loosely, randomly chosen
elements in the protocol are chosen with a distribution at distance at most roughly 2´nr from
uniform.

• nv “ intpDrvbitlenrosq specifies the number of bits used in the challenge of the verifier
in zero-knowledge proofs.

• sH “ Drrohashs specifies the hash function H “ HashfunctionpsHq used to implement
the random oracles.

• sPRG “ Drprgs specifies the hash function used to implement the pseudo-random gener-
ator used to expand challenges into arrays. Let PRG “ PRGpHashfunctionpsPRGqq

• sGq “ Drpgroups specifies the underlying group Gq “ unmarshalpsGqq.

• κ “ intpDrkeywidthsq specifies the key width. This also defines the plaintext space
Mκ “ Gκq , the randomness spaceRκ “ Zκq , and the ciphertext space Cκ “Mκ ˆMκ.

• ωdefault “ intpDrwidthsq specifies the default width of ciphertexts and plaintexts.
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8 Verifying Fiat-Shamir Proofs

We use several non-interactive zero-knowledge proofs: a proof of a shuffle, a proof of a shuffle of
commitments, a commitment-consistent proof of a shuffle, and a proof of correct decryption. In a
normal execution only the first and last proofs are used. If pre-computation is used, then the proof
of a shuffle is essentially divided into, and replaced by, the second and third proofs.

From now on we simply write a for the byte tree representation of an object a.

8.1 Random Oracles

Throughout this section we use the following two random oracles constructed from the hash func-
tion H , the minimum number ns “ seedlenpPRGq of seed bits required by the pseudo-random
generator PRG , and the auxiliary security parameter nv.

• RO seed “ RandomOraclepH,nsq is the random oracle used to generate seeds to the PRG ,
which in turn is used to generate arrays of integers used for batching.

• ROchallenge “ RandomOraclepH,nvq is the random oracle used to generate challenges.

8.2 Independent Generators

The protocols in Section 8.3 and Section 8.5 also require “independent” generators inGq and these
generators must be derived using the random oracles. To do that a seed

s “ RO seedpρ | leafp"generators"qq

is computed by hashing a prefix ρ derived from the protocol info file, the auxiliary session identi-
fier, and a string specifying the intended use of the “independent” generators. Then the generators
are defined by

h “ ph0, . . . , hN 1´1q “ Gq.randomArraypN 1,PRGpsq, nrq ,

which is defined in Section 6.8. The prefix ρ is computed in Step 4 of the main verification routine
in Section 9.3 and given as input to Algorithm 19, Algorithm 20, Algorithm 21, and Algorithm 22
below. The length N 1 is at least N and larger if needed for pre-computation, where N is the
number of input ciphertexts.
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8.3 Proof of a Shuffle

A proof of a shuffle is used by a mix-server to prove that it re-encrypted and permuted its input
ciphertexts. We only describe the computations performed by the verifier for a specific application
of Wikström [11] for more details.

Algorithm 19 (Proof of a Shuffle).
Input Description
ρ Prefix to random oracles.
N Size of the arrays.
ne Number of bits in each component of random vectors used for batching.
nr Acceptable “statistical error” when deriving independent generators.
nv Number of bits in challenges.

PRG Pseudo-random generator used to derive random vectors for batching.
Gq Group of prime order with standard generator g.
Cκ Public key group.
Rκ,ω Randomizer group.
Cκ,ω Ciphertext group.
pk El Gamal public key in Cκ.
w Array w “ pw0, . . . , wN´1q of input ciphertexts in Cκ,ω.
w1 Array w1 “ pw10, . . . , w

1
N´1q of output ciphertexts in Cκ,ω.

µ Permutation commitment.
τpos Commitment of the Fiat-Shamir proof.
σpos Reply of the Fiat-Shamir proof.

Program
1. (a) Interpret µ as an array u “ pu0, . . . , uN´1q of Pedersen commitments in Gq.

(b) Interpret τpos as nodepB,A1, B1, C 1, D1, F 1q, where A1, C 1, D1 P Gq, F 1 P Cκ,ω, and
B and B1 are arrays of N elements in Gq.

(c) Interpret σpos as nodepkA, kB, kC , kD, kE , kF q, where kA, kC , kD P Zq, kF P Rκ,ω,
and kB and kE are arrays of N elements in Zq.

Reject if this fails.

2. Compute a seed s “ RO seed
`

ρ | nodepg, h, u, pk , w, w1q
˘

.

3. Set pt0, . . . , tN´1q “ PRGpsq, where ti P t0, 1u8rne{8s is interpreted as a non-negative
integer 0 ď ti ă 28rne{8s, set ei “ ti mod 2ne and compute

A “
źN´1

i“0
ueii and F “

źN´1

i“0
weii .

4. Compute a challenge v “ ROchallenge
`

ρ | nodepleafpsq, τposq
˘

interpreted as a non-
negative integer 0 ď v ă 2nv .

5. Compute C “
śN´1
i“0 ui

L
śN´1
i“0 hi, D “ BN´1h

´
śN´1
i“0 ei

0 , set B´1 “ h0, and accept if
and only if

AvA1 “ gkA
źN´1

i“0
h
kE,i
i CvC 1 “ gkC

Bv
i B

1
i “ gkB,iB

kE,i
i´1 for i “ 0, . . . , N ´ 1 DvD1 “ gkD

F vF 1 “ Encpk p1,´kF q
źN´1

i“0
pw1iq

kE,i .
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8.4 Proof of a Shuffle of Commitments

A proof of a shuffle of commitments allows a mix-server to show in a pre-computation phase
that it knows how to open a commitment to a permutation. We only describe the computations
performed by the verifier for a specific application of the Fiat-Shamir heuristic. See Appendix D
and Terelius and Wikström [11] for more details.

Algorithm 20 (Verifier of Proof of a Shuffle of Commitments).
Input Description
ρ Prefix to random oracles.
N0 Size of the arrays.
ne Number of bits in each component of random vectors used for batching.
nr Acceptable “statistical error” when deriving independent generators.
nv Number of bits in challenges.

PRG Pseudo-random generator used to derive random vectors for batching.
Gq Group of prime order with standard generator g.
µ Permutation commitment.

τposc Commitment of the Fiat-Shamir proof.
σposc Reply of the Fiat-Shamir proof.

Program
1. (a) Interpret µ as an array u “ pu0, . . . , uN0´1q of Pedersen commitments in Gq.

(b) Interpret τposc as nodepB,A1, B1, C 1, D1q, where A1, C 1, D1 P Gq, and B “

pB0, . . . , BN0´1q and B1 “ pB10, . . . , B
1
N0´1q are arrays in Gq.

(c) Interpret σposc as nodepkA, kB, kC , kD, kEq, where kA, kC , kD P Zq, and kB and
kE are arrays of N0 elements in Zq.

Reject if this fails.

2. Compute a seed s “ RO seed
`

ρ | nodepg, h, uq
˘

.

3. Set pt0, . . . , tN0´1q “ PRGpsq, where ti P t0, 1u8rne{8s is interpreted as a non-negative
integer 0 ď ti ă 28rne{8s, set ei “ ti mod 2ne , and compute A “

śN0´1
i“0 ueii .

4. Compute a challenge v “ ROchallenge
`

ρ | nodepleafpsq, τposcq
˘

interpreted as a non-
negative integer 0 ď v ă 2nv .

5. Compute C “
śN0´1
i“0 ui

L
śN0´1
i“0 hi and D “ BN0´1h

´
śN0´1
i“0 ei

0 , set B´1 “ h0, and
accept if and only if:

AvA1 “ gkA
źN0´1

i“0
h
kE,i
i CvC 1 “ gkC

Bv
i B

1
i “ gkB,iB

kE,i
i´1 for i “ 0, . . . , N0 ´ 1 DvD1 “ gkD .
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8.5 Commitment-Consistent Proof of a Shuffle

Provided pre-computation and a proof of a shuffle of commitments is used, a commitment-consistent
proof of a shuffle can be used to verify the proof of a shuffle for the given permutation commit-
ment. We only describe a specific implementation of the verifier using the Fiat-Shamir heuristic.
See Appendix D and Wikström [12] for more details.

Algorithm 21 (Verifier of Commitment-Consistent Proof of a Shuffle).
Input Description
ρ Prefix to random oracles.
N Size of the arrays.
ne Number of bits in each component of random vectors used for batching.
nr Acceptable “statistical error” when deriving independent generators.
nv Number of bits in challenges.

PRG Pseudo-random generator used to derive random vectors for batching.
Gq Group of prime order with standard generator g.
Cκ Public key group.
Rκ,ω Randomizer group.
Cκ,ω Ciphertext group.
pk El Gamal public key in Cκ.
w Array w “ pw0, . . . , wN´1q of input ciphertexts in Cκ,ω.
w1 Array w1 “ pw10, . . . , w

1
N´1q of output ciphertexts in Cκ,ω.

u Shrunk array u “ pu0, . . . , uN´1q of Pedersen commitments in Gq.
τ ccpos Commitment of the Fiat-Shamir proof.
σccpos Reply of the Fiat-Shamir proof.

Program
1. (a) Interpret τ ccpos as nodepA1, B1q, where A1 P Gq and B1 P Cκ,ω.

(b) Interpret σccpos as nodepkA, kB, kEq, where kA P Zq, kB P Rκ,ω, and kE is an array
of N elements in Zq.

Reject if this fails.

2. Compute a seed s “ RO seed
`

ρ | nodepg, h, u, pk , w, w1q
˘

.

3. Set pt0, . . . , tN´1q “ PRGpsq, where ti P t0, 1u8rne{8s is interpreted as a non-negative
integer 0 ď ti ă 28rne{8s, set ei “ ti mod 2ne and compute A “

śN´1
i“0 ueii .

4. Compute a challenge v “ ROchallenge
`

ρ | nodepleafpsq, τ ccposq
˘

interpreted as a non-
negative integer 0 ď v ă 2nv .

5. Compute B “
śN´1
i“0 weii and accept if and only if:

AvA1 “ gkA
źN´1

i“0
h
kE,i
i BvB1 “ Encpk p1,´kBq

źN´1

i“0
pw1iq

kE,i .

18



8.6 Proof of Correct Decryption

At the end of the mixing the parties jointly decrypt the re-encrypted and permuted list of cipher-
texts. To prove that they did so correctly they use a proof of correct decryption factors. This is
a standard protocol using batching for improved efficiency. The general technique originates in
Bellare et al. [1], but here we combine the proofs of all parties into one before verifying.

Algorithm 22 (Verifier of Decryption Factors).
Input Description
ρ Prefix to random oracles.
N Size of the arrays.
ne Number of bits in each component of random vectors used for batching.
nr Acceptable “statistical error” when deriving independent generators.
nv Number of bits in challenges.

PRG Pseudo-random generator used to derive random vectors for batching.
Gq Group of prime order with standard generator g.
Mκ Basic plaintext group.
Rκ Basic randomness group.
Cκ,ω Ciphertext group.
Mκ,ω Plaintext group.

Γ Polynomial in the exponent where Γ “ pΓ0, . . . ,Γλ´1q and Γl PMκ.
w Array w “ pw0, . . . , wN´1q of input ciphertexts in Cκ,ω, where wi “ pui, viq.

f1, . . . , fk Arrays fj “ pfj,0, . . . , fj,N´1q of decryption factors inMκ,ω.
τdec1 , . . . , τdeck Commitments of the Fiat-Shamir proofs.
σdec1 , . . . , σdeck Replies of the Fiat-Shamir proofs.

∆ Set of exactly λ candidate indices in r1, ks to form a single valid proof.

Program
1. (a) Interpret τdecl as nodepy1l, B

1
lq, where y1l PMκ and B1l PMκ,ω.

(b) Interpret σdecl as kx,l, where kx,l P Rκ.

Reject if this fails.

2. Compute a seed s “ RO seed
`

ρ | nodepnodepg, wq,nodepa, bqq
˘

,
where a “ nodepΓ0, . . . ,Γλ´1q and b “ nodepf1, . . . , fkq.

3. Set pt0, . . . , tN´1q “ PRGpsq, where ti P t0, 1u8rne{8s is interpreted as a non-negative
integer 0 ď ti ă 28rne{8s, and set ei “ ti mod 2ne .

4. Compute a challenge v “ ROchallenge
`

ρ | nodepleafpsq,nodepτdec1 , . . . , τdeck qq
˘

inter-
preted as a non-negative integer 0 ď v ă 2nv .

5. Compute Lagrange coefficients cl “
ś

iP∆ztlu
i
i´l for all l P ∆. Then compute joint

decryption factors f “
`
ś

lP∆ f
αcl
l,i

˘

iPr1,Ns
, where α “ lcmp1, . . . , kq2, joint proof

commitments y1 “
ś

lP∆py
1
lq
cl and B1 “

ś

lP∆pB
1
lq
cl , and a reply for a joint proof

kx “
ř

lP∆ clkx,l. Then compute batched elements

A “
´

źN´1

i“0
ueii , 1

¯

, and B “
źN´1

i“0
feii

and accept if and only if

Γ´v0 y1 “ gkx and BvB1 “ PDeckxpAq .
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9 Verifying a Complete Proof

A proof should be viewed as a capsule that relates a public key, an input, and an output in a
provable way according to given protocol and session parameters. The verification algorithm must
verify that the capsule has this property.

9.1 Components of the Non-Interactive Zero-Knowledge Proofs

In addition to the parameters we need from the protocol info file, we have specific parameters of a
given session stored in separate files in the root of the proof directory.

There is also a subdirectory proofs holding the intermediate results of the execution as well
as non-interactive zero-knowledge proofs relating the intermediate results, the individual public
keys, the full public key, the input, and the output.

The idea of this division of files is to emphasize that a complete verification consists of two
parts. The first part is what is discussed in this document, i.e., verifying the contents of the overall
non-interactive zero-knowledge proof. The second part is to verify that the actual public key, input
ciphertexts, and output plaintexts given in external formats of a particular application matches
those in the proof. This includes verifying the version of VMN, the type of proof, the auxiliary
session identifier, the key width, and the width. We stress that the description of the external
formats can not be part of this document, since they are application dependent.

The first part requires a reasonable background in cryptography and programming, whereas
the second part can be achieved by a very simple program. Even people with limited background in
cryptography and programming can re-use verifiers implemented by knowledgeable independent
parties to check the first part and then write their own simple program for verifying the second
part, without peeking into the proofs directory. The code of latter program would also be easy to
audit. The end result is a trustworthy complete verifier.

Another related reason is that there are complex tallying protocols that repeatedly uses the
mix-net as a blackbox to mix, shuffle, and decrypt in separate sessions. Each session can then be
verified using verifiers written by independent parties. Then a simple verifier of the total tallying
protocol that relates the sessions can be implemented and audited with a limited background in
cryptography.

Files in the Main Directory. We now give details about the files in the main directory. Each file
either contains a binary byte tree or it uses UTF-8 encoding. Recall that there are three different
types of proofs corresponding to mixing, shuffling, and decryption sessions. The following files
have the exact same meaning in all types of proofs.

1. version – An ASCII version string denoted version of the VMN software that created the
proof. This string is denoted by version below. The flag -version can be used with all
commands of the VMN software to determine the installed version.

2. type – One of the ASCII strings mixing, shuffling, or decryption. This string is
denoted type below.

3. auxsid – An auxiliary session identifier of this session as an ASCII string consisting of
characters from the set tA, . . . ,Z,a, . . . ,z,0, . . . ,9, u. This equals the string "default"
unless a different auxiliary session identifier is given explicitly when executing the mix-net.
This string is denoted by auxsid below.

4. width – The width ω ą 0 of ciphertexts as a decimal number in ASCII. This may, or may
not, be identical to the default width in the protocol info file.
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5. FullPublicKey.bt – Full public key used to form input ciphertexts. The required format of
this file is a byte tree pk , where pk P Cκ. Here the key width κ and the underlying prime
order group Gq are derived from the protocol info file.

6. Ciphertexts.bt – Input ciphertexts. The required format of this file is a byte tree L0, where
L0 is an array of N elements in Cκ,ω. This defines N , the number of input ciphertexts.

The file storing the output of the session comes in two forms depending on the type of session.

7. (a) Plaintexts.bt – For mixing and decryption sessions, the output plaintext elements that
have not been decoded in any way. This file should contain a byte tree m, where m is
an array of N elements inMκ,ω.

(b) ShuffledCiphertexts.bt – For a shuffling session, the re-randomized and permuted
ciphertexts. This file should contain a byte tree Lλa , where Lλa is an array of N
elements in Cκ,ω. The meaning of the index λa is explained in Point 8 below.

version

type
auxsid

width

FullPublicKey.bt
Ciphertexts.bt

Plaintexts.bt or
ShuffledCiphertexts.bt

Intermediate values

&

zero-knowledge
proofs

Figure 1: A “proof capsule” contains the version, the type, the auxiliary session identifier, and
the width, in separate files. Combined with the protocol info file this defines the format of the
remaining contents of the proof. The input consists of a full public key and a list of ciphertexts.
The output is either a file Plaintexts.bt containing plaintexts, or a file ShuffledCiphertexts.bt
containing shuffled ciphertexts, depending on the type of session that generated the proof. A
subdirectory named proof contains the intermediate results and zero-knowledge proofs that relate
the inputs and outputs.

Files in the Proofs Directory. The proofs directory proofs holds not only the Fiat-Shamir
proofs, but also the intermediate results. In this section we describe the formats of these files and
introduce notation for their contents. Here xly denotes an integer parameter 0 ď l ď k encoded
using two decimal digits usually representing the index of a mix-server, but if the lth mix-server is
corrupted, then a file with suffix l does not necessarily originate from the lth mix-server. Further-
more, all types of files do not appear with all suffixes.

Active threshold.

8. activethreshold – Threshold λa of mix-servers claimed by at least λ mix-servers to guar-
antee that at least λ mix-servers are active for some set of active servers, given as a decimal
number in ASCII.

Example 23. For example if k “ 7 and λ “ 4, and the 2nd mix-server was deactivated
during the session to be verified, then λa “ 5.
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Files for keys.

9. PolynomialInExponent.bt – Polynomial in the exponent corresponding to the Shamir se-
cret sharing polynomial used to share the joint secret key. The required format of this file is
a byte tree Γ, where Γ is an array pΓ0, . . . ,Γλ´1q of elements inMκ. The joint public key
and public keys of the mix-servers are derived from these elements in Algorithm 24 below.

Files for proofs of shuffles.

10. Ciphertextsxly.bt – The lth intermediate list of ciphertexts. This file should contain a byte
tree Ll, where Ll is an array of N elements in Cκ,ω, and N is the number of elements in the
list L0 of input ciphertexts defined in Point 6. The list Ll is normally the output of the lth
mix-server, but if it is deactivated or corrupted it is set equal to Ll´1.

11. PermutationCommitmentxly.bt – Commitment to a permutation. The required format of
the byte tree µl in this file is specified in Algorithm 19.

12. PoSCommitmentxly.bt – “Proof commitment” of the proof of a shuffle. The required
format of the byte tree τposl in this file is specified in Algorithm 19.

13. PoSReplyxly.bt – “Proof reply” of the proof of a shuffle. The required format of the byte
tree σposl in this file is specified in Algorithm 19.

Files for proofs of shuffles when pre-computation is used.

14. maxciph – The number N0 of ciphertexts for which pre-computation was performed, given
in ASCII decimal notation.

15. PoSCCommitmentxly.bt – “Proof commitment” of the proof of a shuffle of commitments.
The required format of the byte tree τposcl in this file is specified in Algorithm 20.

16. PoSCReplyxly.bt – “Proof reply” of the proof of a shuffle of commitments. The required
format of the byte tree σposcl in this file is specified in Algorithm 20.

17. KeepListxly.bt – Keep-list used to shrink a permutation-commitment if pre-computation is
used before the mix-net is executed. The file should contain a byte tree tl, where tl should
be an array of N0 booleans, of which exactly N are true, indicating which components of
µl to keep.

18. CCPoSCommitmentxly.bt – “Proof commitment” of a commitment-consistent proof of a
shuffle. The required format of the byte tree τ ccposl in this file is specified in Algorithm 21.

19. CCPoSReplyxly.bt – “Proof reply” of a commitment-consistent proof of a shuffle. The
required format of the byte tree σccposl in this file is specified in Algorithm 21.

Files for proof of decryption.

20. CorrectIndices.bt – Boolean array indicating exactly λ parties that provided individual
proofs of correct decryption factors that can be combined into a single valid proof. More
precisely, a byte tree d such that d is a boolean array of length k ` 1 (the first component is
ignored). Denote the set of the indicated integers by ∆ “

 

l P r1, ks : dl “ true
(

.

21. DecryptionFactorsxly.bt – Decryption factors of the lth mix-server combined to jointly
decrypt the shuffled ciphertexts. This file should contain a byte tree fl, where fl is an array
of N elements inMκ,ω.
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22. DecrFactCommitmentxly.bt – “Proof commitment” of a proof of correctness of the de-
cryption factors computed by the lth mix-server. The required format of the byte tree τdecl

of this file is specified in Algorithm 22.

23. DecrFactReplyxly.bt – “Proof reply” of a proof of correctness of the decryption factors
computed by the lth mix-server. The required format of the byte tree σdecl of this file is
specified in Algorithm 22.

Relation Between Files and Abstract Notation. For easy reference we tabulate the notation
introduced above and from which files the contents are derived.

Not. Point File Not. Point File
version 1 version τposl 12 PoSCommitmentxly.bt
type 2 type σpos

l 13 PoSReplyxly.bt
auxsid 3 auxsid N0 14 maxciph
ω 4 width τposcl 15 PoSCCommitmentxly.bt
pk 5 FullPublicKey.bt σposc

l 16 PoSCReplyxly.bt
L0 6 Ciphertexts.bt tl 17 KeepListxly.bt
m 7a Plaintexts.bt τccposl 18 CCPoSCommitmentxly.bt
Lλa

7b ShuffledCiphertexts.bt σccpos
l 19 CCPoSReplyxly.bt

λa 8 activethres ∆ 20 CorrectIndices.bt
Γ 9 PolynomialInExponent.bt fl 21 DecryptionFactorsxly.bt
Ll 10 Ciphertextsxly.bt τdecl 22 DecrFactCommitmentxly.bt
µl 11 PermutationCommitmentxly.bt σdec

l 23 DecrFactReplyxly.bt

9.2 Subroutines of the Verification Algorithm

We are now ready to summarize the subroutines needed for verification in terms of the abstract
notation introduced above.

Reading and verifying keys. We begin with a subroutine that reads the joint public key and the
polynomial in the exponent used for secret sharing and checks that they are consistent.

Algorithm 24 (Reading and Verifying Keys).
Input Description
λ Threshold number of mix-servers needed to decrypt.
Mκ Underlying group.

Program
1. Joint public key. Attempt to read the joint public key pk , where pk “ pg, yq is contained

in Cκ, from file as described in Point 5. If this fails, then reject.

2. Polynomial in the exponent. Attempt to read the polynomial in the exponent
Γ “ pΓ0, . . . ,Γλ´1q, where Γi PMκ as described in Point 9. If this fails or if Γ0 ‰ y,
then reject.

3. Return ppk ,Γq.
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Correctness of shuffling. Next we describe the algorithm for verifying a complete shuffling
consisting of intermediate lists of ciphertexts and either proofs of shuffles, or proofs of shuffles of
commitments combined with commitment-consistent proofs of shuffles.

Algorithm 25 (Verifier of Shuffling).
Input Description
ρ Prefix to random oracles.
λ Number of mix-servers needed to decrypt.
λa Number of mix-servers such that at least λ are active.
N Size of the arrays.
ne Number of bits in each component of random vectors used for batching.
nr Acceptable “statistical error” when deriving independent generators.
nv Number of bits in challenges.

PRG Pseudo-random generator used to derive random vectors for batching.
Gq Group of prime order with standard generator g.
Cκ Public key group.
Rκ,ω Randomness group.
Cκ,ω Ciphertext group.
pk Joint public key in Cκ.
L0 Original array of N ciphertexts in Cκ,ω.
Lλa Array of N shuffled ciphertexts in Cκ,ω.
posc Indicates that the proof of a shuffle (of commitments) should be verified.
ccpos Indicates if the (commitment-consistent) proof of a shuffle should be verified.

Program

In case the maxciph file as defined in Point 14 does not exist, then no pre-computation took
place and plain shuffling was used. The following is then executed.

For l “ 1, . . . , λa do:

1. Array of ciphertexts. If l ă λa, then read the array Ll of N ciphertexts in Cκ,ω as
described in Point 10. If this fails, then reject.

2. Verify proof of shuffle. Read permutation commitment µl, proof commitment τposl , and
proof reply σposl as described in Point 11, Point 12, and Point 13, respectively. Then
execute Algorithm 19 on input

pρ,N, ne, nr, nv,PRG , Gq, Cκ,Rκ,ω, Cκ,ω, pk , Ll´1, Ll, µl, τ
pos
l , σposl q .

If reading fails, or if the algorithm rejects and Ll ‰ Ll´1, then reject.

If at least one proof is deemed valid by Algorithm 19 above, then accept and otherwise reject.
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Algorithm 26 (Algorithm 25 continued).

In case the maxciph file as defined in Point 14 does exist, then pre-computation took place.
The following is then executed.

Attempt to read N0 as described in Point 14. If this fails, or if N ą N0, then reject.
For l “ 1, . . . , λa do:

1. Permutation commitment. Read the byte tree representation µl of a permutation com-
mitment ul of the lth mix-server as described in Point 11.

2. If posc “ true , then we verify the permutation commitment of the lth mix-server.

(a) Verify proof of a shuffle of commitments. Read a proof commitment τposcl and a
proof reply σposcl as described in Point 12 and Point 13, respectively, and execute
Algorithm 20 on input pρ,N0, ne, nr, nv,PRG , Gq, µl, τ

posc
l , σposcl q. If reading fails

or if the algorithm rejects, then set ul equal to the list of independent generators h.

(b) Shrink permutation commitment. Read the keep-list tl as described in Point 17. If
this fails, then let tl be the array of N0 booleans of which the first N are true and the
rest false, and set ul “ pul,iqtl,i“true be the sub-array indicated by tl.

3. If ccpos “ true , then we verify the commitment-consistent proof of a shuffle.

(a) Read intermediate list of ciphertexts. If l ă λa, then read the array Ll of N
ciphertexts in Cκ,ω as described in Point 10. If this fails, then reject.

(b) Verify commitment-consistent proof of shuffle. Read a proof commitment
τ ccposl and a proof reply σccposl as described in Point 18 and Point 19, respec-
tively. If reading fails, then reject. Then execute Algorithm 21 on input
pρ,N, ne, nr, nv,PRG , Gq, Cκ,Rκ,ω, Cκ,ω, pk , Ll´1, Ll, ul, τ

ccpos
l , σccposl q. If the

algorithm rejects and Ll ‰ Ll´1, then reject.

If the verified proofs of at least one party is deemed valid by Algorithm 21 above, then accept
and otherwise reject.
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Correctness of decryption. The verifier of joint decryption is different from the literature in
that it executes in parallel to allow combining the proofs of the mix-servers into a single proof
before verification and uses a simple trick to reduce the size of exponents when combining.

Algorithm 27 (Verifier of Decryption).
Input Description
ρ Prefix to random oracles.
N Size of the arrays.
ne Number of bits in each component of random vectors used for batching.
nr Acceptable “statistical error” when deriving independent generators.
nv Number of bits in challenges.

PRG Pseudo-random generator used to derive random vectors for batching.
Gq Group of prime order with standard generator g.
Mκ,ω Plaintext group.
Cκ,ω Ciphertext group.

Γ Polynomial in the exponent pΓ0, . . . ,Γλ´1q where Γl PMκ.
L Array of N ciphertexts in Cκ,ω.
m Array of N plaintexts inMκ,ω.
∆ Set of exactly λ candidate indices in r1, ks to form a single valid proof.

Program
1. Read proofs. For l “ 1, . . . , λ, read fl, τdecl , and σdecl of the lth mix-server as described

in Point 21, Point 22, and Point 23, respectively. If this fails, then reject. Otherwise, set

f “ pf1, . . . , fkq

τdec “ pτdec1 , . . . , τdeck q

σdec “ pσdec1 , . . . , σdeck q

2. Verify combined proof. Attempt to verify a single joint proof by executing Algorithm 22
on input

pρ,N, ne, nr, nv,PRG , Gq,Mκ,Rκ, Cκ,ω,Mκ,ω,Γ, L, f, τ
dec , σdec ,∆q .

If it rejects, then reject.

3. Verify plaintext. If m ‰ TDec
`

L,
ś

lP∆ f
αcl
l

˘

, where α “
`

lcmp1, . . . , kq
˘2, then

reject and otherwise accept.
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9.3 Complete Verification Algorithm

We are finally ready to describe the verification algorithm. We stress that the parameters specified
in the protocol info file must be scrutinized manually. If any parameter is found to be weak, then
the proof can not be trusted. Furthermore, the version file contains the version of VMN that was
used to produce the proof. The user is expected to check that its verifier is compatible.

Algorithm 28 (Verifier).
Input Description

typeexpected Expected type of proof.
protinfo Protocol info file.
directory Directory containing proof.

auxsidexpected Expected auxiliary session identifier.
ωexpected Expected width of ciphertexts (K indicates that the default width is used).
posc Indicates that the proof of a shuffle (of commitments) should be verified.
ccpos Indicates if the (commitment-consistent) proof of a shuffle should be verified.
dec Indicates that the decryption should be verified.

Program

1. Protocol parameters. Verify that the XML of the protocol info file protinfo is
well-formed and reject otherwise. Attempt to read the public parameters from protinfo as
described in Section 7. If this fails, then reject. This defines versionprot, sid, k, λ, ne, nr,
nv, sH , sPRG , sGq , sH , κ, and ωdefault.

2. Proof parameters.

(a) Read version, type, auxsid, ω, from the proof directory directory as described in
Point 1 – Point 4. If this fails, then reject.

(b) If version ‰ versionprot or version ‰ 3.0.4, then reject.
If type ‰ typeexpected, then reject.
If auxsid ‰ auxsidexpected, then reject.
If ωexpected “ K and ω ‰ ωdefault, then reject.
If ωexpected ‰ K and ω ‰ ωexpected, then reject.

3. Derived sets and objects. Attempt to derive and define the underlying group
Gq “ unmarshalpsGqq, the spaces of plaintextsMκ “ Gκq , randomnessRκ “ Zκq , and
ciphertexts Cκ “Mκ ˆMκ defined for a given key width κ. Then define the generalized
set of plaintextsMκ,ω “Mω

κ , the set of randomnessRκ,ω “ Rωκ , and the set of
ciphertexts Cκ,ω “Mκ,ω ˆMκ,ω. Finally, define the hash function
H “ HashfunctionpsHq, and the pseudo-random generator
PRG “ PRG

`

HashfunctionpsPRGq
˘

. If anything fails, then reject.

4. Prefix to Random Oracles. To differentiate sessions, we compute a digest ρ of selected
protocol parameters and use this as a prefix to all calls to random oracles. The digest ρ is
defined by

ρ “ H

¨

˚

˚

˝

node
ˆ

version, sid|”.”|auxsid,

bytes4pnrq,bytes4pnvq,bytes4pneq, sPRG , sGq , sH

˙

˛

‹

‹

‚

.
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Algorithm 29 (Algorithm 28 continued).
5. Read keys. Execute Algorithm 24. If it fails, then reject and otherwise, let the output be
ppk ,Γq.

6. Read lists.

(a) Read input ciphertexts. Read the array L0 of N ciphertexts as described in Point 6
for some N . If this fails, then reject. This defines the integer N used to verify the
length of other arrays.

(b) Read shuffled ciphertexts.
If type “ mixing, then read Lλa as described in Point 6 and if
type “ shuffling, then read Lλa as described in Point 7b. If this fails, then
reject.

(c) Read output plaintexts. If type P tmixing,decryptionu, and dec “ true ,
then read the array m of plaintexts as described in Point 7a. If this fails, then reject.
Otherwise there are no plaintexts to read.

7. Verify relations between lists.

(a) Verify shuffling. If type P tmixing,shufflingu, and posc “ true or
ccpos “ true , then execute Algorithm 25 on input

pρ, λ, λa, N, ne, nr, nv,PRG , Gq, Cκ,,Rκ,ω, Cκ,ω, pk, L0, Lλa , posc, ccposq ,

and if it rejects, then reject.
(b) Verify decryption. If dec “ true then do the following.

If type “ mixing, then set L “ Lλa ,
else if type “ decryption, then set L “ L0,
and otherwise reject.

Read the set of correct indices ∆ as described in Point 20. If this fails, then reject.
Then execute Algorithm 27 on input

pρ,N, ne, nr, nv,PRG , Gq,Mκ,ω, Cκ,ω,Γ, L,m,∆q ,

and if it rejects, then reject.

8. Accept proof.

Note that if no pre-computation was used, the inputs posc and ccpos should either both be true or
both be false when invoking Algorithm 28.

10 Standard Command Line Interface of Verifier

To ensure interoperability between different independently implemented verifiers it is tempting to
require that every verifier implements the above algorithm as well as providing the same command
line interface as vmnv. However, not all implementors may be motivated to implement the full
functionality and identical implementation specific options.

Thus, we define a standard command line interface with a well-defined semantic in terms of
Algorithm 28 and provide a mechanism to limit the functionality. Implementors may of course add

28



their own implementation specific options. This opens the door to implementations that eliminate
all standard options and provide their own, but the requirements below makes this clear to the user.

10.1 Basic Functionality

We require that the basic command-line interface of every independent verifier iv is defined as
follows, where we have truncated the descriptions of the options. This is basic in the sense that the
implementor is free to add additional usage forms as well as additional options to existing usage
forms, but it must be possible to execute iv in the following ways (except that some usage forms
and options may be eliminated as explained in the next section).

Usage:
iv -h
iv -c
iv -mix

[-auxsid <value>] [-noccpos] [-nodec] [-nopos] [-noposc] [-width <value>]
<protInfo> <nizkp>

iv -shuffle
[-auxsid <value>] [-noccpos] [-noposc] [-width <value>]
<protInfo> <nizkp>

iv -decrypt
[-auxsid <value>] [-width <value>]
<protInfo> <nizkp>

iv -version

We require that iv -h prints the complete usage information of the command, and we require
that iv -version prints the version of the verifier, but there are no restrictions on the formats
of the outputs. Indeed, we expect different implementations to use different libraries for parsing
and printing usage forms and options.

The output of iv -c is described below. The other usage forms are decoded into executions
of Algorithm 28. We first define its parameters as follows in terms of command line parameters.

Parameter Decoding

typeexpected Assigned mixing, shuffle, or decryption depending on if the -mix,
-shuffle, or -decrypt option is used respectively.

protinfo Assigned the value of the first parameter, i.e., the parameter denoted
<protInfo>. This must be a path to a file.

directory Assigned the value of the second parameter, i.e., the parameter denoted
<nizkp>. This must be a path to a directory.

auxsidexpected Assigned the value of the -auxsid option if present and "default" other-
wise. This must be a string of characters from the set
tA, . . . ,Z,a, . . . ,z,0, . . . ,9, u

ωexpected Assigned the value of the -width option if present and K otherwise. This must
be an integer greater than zero represented in decimal on the command line.

posc Assigned false if -nopos or -noposc is used and true otherwise.

ccpos Assigned false if -nopos or -noccpos is used and true otherwise.

dec Assigned false if -nodec is used and true otherwise.

The exit code of iv must be equal to 0 or ´1 depending on if Algorithm 28 accepts or rejects,
respectively, on input ptypeexpected, protinfo, directory, auxsidexpected, ωexpected, posc, ccpos, decq.
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10.2 Encoding and Communicating Missing Functionality

We require that the functional limitations of iv compared to the basic functionality are captured
by a triple pb, f, pq of the following form.

1. Proof types. The proof types not implemented by iv are captured by a subset b of the set
 

-mix,-shuffle,-decrypt
(

.

2. Option flags. The options not implemented by iv are captured by a subset f of the set
 

-width,-nopos,-nodec,-noccpos,-noposc
(

.

3. Pre-computation. If iv is able to verify proofs where the mix-servers used pre-computation,
then p “ H and otherwise p “ t-nopreu.

We require that iv exits with exit code´3 when executed on a given list of command line param-
eters if and only if:

1. any string from bY f appears as a command line parameter, or

2. p “ t-nopreu and there exists a file directory{proofs/maxciphs, where directory is
defined above.

There are no requirements on the output of iv in this case, but it is of course wise to implement
an option to enable or disable the printing of an explanation.

We require that iv -c prints the output of vmnv -mc iv x verbatim on standard output
without any side effects, where x is the comma separated list of all strings in bY f Y p.

11 Additional Verifications Needed in Applications

As explained above, and illustrated Figure 1, a proof may be viewed as a capsule consisting of:

1. an outer shell containing the public key used, input ciphertexts, and the output plaintexts or
shuffled ciphertexts, as well as some additional data, and

2. an inner capsule stored in a subdirectory that contains intermediate values of an execution
and zero-knowledge proofs that relate them and the values from the outer shell.

Even if such a proof capsule is verified to be correct, the values from the outer shell must be
consistent to the values of the given application.

The formats used to represent the values from the outer shell, e.g., the public key handed to
the senders and the list of ciphertexts received from senders and the output list of ciphertexts are
application dependent. Thus, to verify the overall correctness in a given application, it must be
verified that all parties agree on an encoding scheme such that:

1. The values version, type, auxsid, and ω match the corresponding values in the application.

2. The public key actually used by senders is a representation of pk .

3. The actual input ciphertexts is a representation of L0.

4. Depending on which type of session is verified:

(a) the actual output plaintexts is a decoding of the plaintext group elements in m, or
(b) the actual output ciphertexts is a representation of Lλa .

All of the above falls outside the scope of this document, since we can not anticipate the scheme
used to represent these objects.
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A Test Vectors for Cryptographic Primitives

PRGpHashfunctionp"SHA-256"qq
Seed (32 bytes):

000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f

Expansion (128 bytes):

70f4003d52b6eb03da852e93256b5986b5d4883098bb7973bc5318cc66637a84

04a6950a06d3e3308ad7d3606ef810eb124e3943404ca746a12c51c7bf776839

0f8d842ac9cb62349779a7537a78327d545aaeb33b2d42c7d1dc3680a4b23628

627e9db8ad47bfe76dbe653d03d2c0a35999ed28a5023924150d72508668d244

PRGpHashfunctionp"SHA-384"qq
Seed (48 bytes):

000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f

202122232425262728292a2b2c2d2e2f

Expansion (128 bytes):

e45ac6c0cafff343b268d4cbd773328413672a764df99ab823b53074d94152bd

27fc38bcffdb7c1dc1b6a3656b2d4819352c482da40aad3b37f333c7afa81a92

b7b54551f3009efa4bdb8937492c5afca1b141c99159b4f0f819977a4e10eb51

61edd4b1734717de4106f9c184a17a9b5ee61a4399dd755f322f5d707a581cc1

PRGpHashfunctionp"SHA-512"qq
Seed (64 bytes):

000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f

202122232425262728292a2b2c2d2e2f303132333435363738393a3b3c3d3e3f

Expansion (128 bytes):

979043771043f4f8e0a2a19b1fbfbe5a8f076c2b5ac003e0b9619e0c45faf767

47295734980602ec1d8d3cd249c165b7db62c976cb9075e35d94197c0f06e1f3

97a45017c508401d375ad0fa856da3dfed20847716755c6b03163aec2d9f43eb

c2904f6e2cf60d3b7637f656145a2d32a6029fbda96361e1b8090c9712a48938

RandomOraclepHashfunctionp"SHA-256"q, 65q

Input (32 bytes):

000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f

Output (9 bytes of which the last 65 bits may be non-zero):

001a8d6b6f65899ba5

RandomOraclepHashfunctionp"SHA-256"q, 261q

Input (32 bytes):

000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f

Output (33 bytes of which the last 261 bits may be non-zero):

1c04f57d5f5856824bca3af0ca466e283593bfc556ae2e9f4829c7ba8eb76db8

78
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RandomOraclepHashfunctionp"SHA-384"q, 93q

Input (32 bytes):

000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f

Output (12 bytes of which the last 93 bits may be non-zero):

04713a5e22935833d436d1db

RandomOraclepHashfunctionp"SHA-384"q, 411q

Input (32 bytes):

000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f

Output (52 bytes of which the last 411 bits may be non-zero):

00dc086c320e38b92722a9c0f87f2f5de81b976400e2441da542d1c3f3f391e4

1d6bcd8297c541c2431a7272491f496b622266aa

RandomOraclepHashfunctionp"SHA-512"q, 111q

Input (32 bytes):

000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f

Output (14 bytes of which the last 111 bits may be non-zero):

28d742c34b97367eb968a3f28b6c

RandomOraclepHashfunctionp"SHA-512"q, 579q

Input (32 bytes):

000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f

Output (73 bytes of which the last 579 bits may be non-zero):

00a6f79b8450fef79af71005c0b1028c9f025f322f1485c2b245f658fe641d47

dcbb4fe829e030b52e4a81ca35466ad1ca9be6feccb451e7289af318ddc9dae0

98a5475d6119ff6fe0

B Schema for Protocol Info Files

<?xml version="1.0" encoding="UTF-8" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:simpleType name="inetport">
<xs:restriction base="xs:string">

<xs:maxLength value="512"/>
<xs:pattern value="((([a-z0-9]([-a-z0-9]*[a-z0-9])*)(\.([a-z0-9]([-a-z0-9]*[a-z0-9])*))*)|((((25[0-5])|(2[0-4][0-9])|(1[0-9][0-9])|([1-9][0-9])|[0-9])\.){3}((25[0-5])|(2[0-4][0-9])|(1[0-9][0-9])|([1-9][0-9])|[0-9]))):((6553[0-5])|(655[0-2][0-9])|(65[0-4][0-9]{2})|(6[0-4][0-9]{3})|([1-5][0-9]{4})|([1-9][0-9]{0,3}))"/>

</xs:restriction>
</xs:simpleType>

<xs:simpleType name="urlport">
<xs:restriction base="xs:string">

<xs:maxLength value="512"/>
<xs:pattern value="http://((([a-z0-9]([-a-z0-9]*[a-z0-9])*)(\.([a-z0-9]([-a-z0-9]*[a-z0-9])*))*)|((((25[0-5])|(2[0-4][0-9])|(1[0-9][0-9])|([1-9][0-9])|[0-9])\.){3}((25[0-5])|(2[0-4][0-9])|(1[0-9][0-9])|([1-9][0-9])|[0-9]))):((6553[0-5])|(655[0-2][0-9])|(65[0-4][0-9]{2})|(6[0-4][0-9]{3})|([1-5][0-9]{4})|([1-9][0-9]{0,3}))"/>

</xs:restriction>
</xs:simpleType>
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<xs:element name="protocol">
<xs:complexType>
<xs:sequence>

<xs:element name="version"
minOccurs="1"
maxOccurs="1">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:pattern value="[0-9]{0,3}\.[0-9]{0,3}\.[0-9]{0,3}"/>
</xs:restriction>

</xs:simpleType>
</xs:element>

<xs:element name="sid"
minOccurs="1"
maxOccurs="1">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:pattern value="[A-Za-z][A-Za-z0-9]{1,1023}"/>
</xs:restriction>

</xs:simpleType>
</xs:element>

<xs:element name="name"
minOccurs="1"
maxOccurs="1">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:pattern value="[A-Za-z][A-Za-z0-9_ ]{1,255}"/>
</xs:restriction>

</xs:simpleType>
</xs:element>

<xs:element name="descr"
minOccurs="1"
maxOccurs="1">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:pattern value="|[A-Za-z][A-Za-z0-9:;?!.()\[\] ]{0,4000}"/>
</xs:restriction>

</xs:simpleType>
</xs:element>

<xs:element name="nopart"
minOccurs="1"
maxOccurs="1">

<xs:simpleType>
<xs:restriction base="xs:integer">

<xs:minInclusive value="1"/>
<xs:maxExclusive value="25"/>

</xs:restriction>
</xs:simpleType>
</xs:element>

<xs:element name="statdist"
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minOccurs="1"
maxOccurs="1">

<xs:simpleType>
<xs:restriction base="xs:integer">

<xs:minInclusive value="0"/>
<xs:maxExclusive value="256"/>

</xs:restriction>
</xs:simpleType>
</xs:element>

<xs:element name="bullboard"
type="xs:string"
minOccurs="1"
maxOccurs="1"/>

<xs:element name="thres"
minOccurs="1"
maxOccurs="1">

<xs:simpleType>
<xs:restriction base="xs:integer">

<xs:minInclusive value="1"/>
<xs:maxExclusive value="25"/>

</xs:restriction>
</xs:simpleType>
</xs:element>

<xs:element name="pgroup"
type="xs:string"
minOccurs="1"
maxOccurs="1"/>

<xs:element name="keywidth"
minOccurs="1"
maxOccurs="1">

<xs:simpleType>
<xs:restriction base="xs:integer">

<xs:minInclusive value="1"/>
<xs:maxExclusive value="2147483647"/>

</xs:restriction>
</xs:simpleType>
</xs:element>

<xs:element name="vbitlen"
minOccurs="1"
maxOccurs="1">

<xs:simpleType>
<xs:restriction base="xs:integer">

<xs:minInclusive value="1"/>
<xs:maxExclusive value="2048"/>

</xs:restriction>
</xs:simpleType>
</xs:element>

<xs:element name="vbitlenro"
minOccurs="1"
maxOccurs="1">

<xs:simpleType>
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<xs:restriction base="xs:integer">
<xs:minInclusive value="1"/>
<xs:maxExclusive value="2048"/>

</xs:restriction>
</xs:simpleType>
</xs:element>

<xs:element name="ebitlen"
minOccurs="1"
maxOccurs="1">

<xs:simpleType>
<xs:restriction base="xs:integer">

<xs:minInclusive value="1"/>
<xs:maxExclusive value="2048"/>

</xs:restriction>
</xs:simpleType>
</xs:element>

<xs:element name="ebitlenro"
minOccurs="1"
maxOccurs="1">

<xs:simpleType>
<xs:restriction base="xs:integer">

<xs:minInclusive value="1"/>
<xs:maxExclusive value="2048"/>

</xs:restriction>
</xs:simpleType>
</xs:element>

<xs:element name="prg"
type="xs:string"
minOccurs="1"
maxOccurs="1"/>

<xs:element name="rohash"
type="xs:string"
minOccurs="1"
maxOccurs="1"/>

<xs:element name="corr"
minOccurs="1"
maxOccurs="1">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:pattern value="interactive|noninteractive"/>
</xs:restriction>

</xs:simpleType>
</xs:element>

<xs:element name="width"
minOccurs="1"
maxOccurs="1">

<xs:simpleType>
<xs:restriction base="xs:integer">

<xs:minInclusive value="1"/>
<xs:maxExclusive value="2147483647"/>

</xs:restriction>
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</xs:simpleType>
</xs:element>

<xs:element name="maxciph"
minOccurs="1"
maxOccurs="1">

<xs:simpleType>
<xs:restriction base="xs:integer">

<xs:minInclusive value="0"/>
<xs:maxExclusive value="2147483647"/>

</xs:restriction>
</xs:simpleType>
</xs:element>

<xs:element name="party"
minOccurs="0"
maxOccurs="25">

<xs:complexType>
<xs:sequence>

<xs:element name="name"
minOccurs="1"
maxOccurs="1">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:pattern value="[A-Za-z][A-Za-z0-9_ ]{1,255}"/>
</xs:restriction>

</xs:simpleType>
</xs:element>

<xs:element name="srtbyrole"
minOccurs="1"
maxOccurs="1">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:pattern value="[A-Za-z0-9][A-Za-z0-9]{1,63}"/>
</xs:restriction>

</xs:simpleType>
</xs:element>

<xs:element name="descr"
minOccurs="1"
maxOccurs="1">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:pattern value="|[A-Za-z][A-Za-z0-9:;?!.()\[\] ]{0,4000}"/>
</xs:restriction>

</xs:simpleType>
</xs:element>

<xs:element name="pkey"
type="xs:string"
minOccurs="1"
maxOccurs="1"/>

37



<xs:element name="http" type="urlport"/>

<xs:element name="hint" type="inetport"/>

</xs:sequence>
</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>
</xs:element>

</xs:schema>

C Example Protocol Info File

<!-- ATTENTION! WE STRONGLY ADVICE AGAINST EDITING THIS FILE!

This is a protocol information file. It contains all the parameters
of a protocol session as agreed by all parties.

Each party must hold an identical copy of this file. WE RECOMMEND
YOU TO NOT EDIT THIS FILE UNLESS YOU KNOW EXACTLY WHAT YOU ARE
DOING.

Many XML features are disabled and throw errors, so parsing is more
restrictive than the schema implies. -->

<protocol>

<!-- Version of Verificatum Software for which this info is intended. -->
<version>3.0.4</version>

<!-- Session identifier of this protocol execution. This must be
globally unique and satisfy the regular expression [A-Za-z][A-Za-z0-
9]{1,1023}. -->

<sid>SID</sid>

<!-- Name of this protocol execution. This is a short descriptive name
that is NOT necessarily unique, but satisfies the regular
expression [A-Za-z][A-Za-z0-9_ ]{1,255}. -->

<name>Swedish Election</name>

<!-- Description of this protocol execution. This is merely a longer
description than the name of the protocol execution. It must
satisfy the regular expression |[A-Za-z][A-Za-z0-9:;?!.()\[\] ]
{0,4000}. -->

<descr></descr>

<!-- Number of parties taking part in the protocol execution. This must
be a positive integer that is at most 25. -->

<nopart>3</nopart>

<!-- Statistical distance from uniform of objects sampled in protocols
or in proofs of security. This must be a non-negative integer at
most 256. -->

<statdist>100</statdist>

<!-- Name of bulletin board implementation used, i.e., a subclass of com.
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verificatum.protocol.com.BullBoardBasic. WARNING! This field is not
validated syntactically. -->

<bullboard>com.verificatum.protocol.com.BullBoardBasicHTTPW</bullboard>

<!-- Threshold number of parties needed to violate the privacy of the
protocol, i.e., this is the number of parties needed to decrypt.
This must be positive, but at most equal to the number of parties.
-->

<thres>2</thres>

<!-- Group over which the protocol is executed. An instance of a
subclass of com.verificatum.arithm.PGroup. -->

<pgroup>ModPGroup(safe-prime modulus=2*order+1. order bit-length = 511):
:00000000020100000020636f6d2e766572696669636174756d2e61726974686d2e4d6
f645047726f757000000000040100000041009a91c3b704e382e0c772fa7cf0e5d6363ed
c53d156e841555702c5b6f906574204bf49a551b695bed292e0218337c0861ee649d2f
e4039174514fe2c23c10f6701000000404d48e1db8271c17063b97d3e7872eb1b1f6e29
e8ab7420aaab8162db7c832ba1025fa4d2a8db4adf69497010c19be0430f7324e97f201
c8ba28a7f1611e087b3010000004100300763b0150525252e4989f51e33c4e6462091152
ef2291e45699374a3aa8acea714ff30260338bddbb48fc7446b273aaada90e3ee8326
f388b582ea8a073502010000000400000001</pgroup>

<!-- Width of El Gamal keys. If equal to one the standard El Gamal
cryptosystem is used, but if it is greater than one, then the
natural generalization over a product group of the given width is
used. This corresponds to letting each party holding multiple
standard public keys. -->

<keywidth>1</keywidth>

<!-- Bit length of challenges in interactive proofs. -->
<vbitlen>128</vbitlen>

<!-- Bit length of challenges in non-interactive random-oracle proofs.
-->

<vbitlenro>256</vbitlenro>

<!-- Bit length of each component in random vectors used for batching.
-->

<ebitlen>128</ebitlen>

<!-- Bit length of each component in random vectors used for batching in
non-interactive random-oracle proofs. -->

<ebitlenro>256</ebitlenro>

<!-- Pseudo random generator used to derive random vectors for
batchingfrom jointly generated seeds. This can be "SHA-256", "SHA-
384", or "SHA-512", in which case com.verificatum.crypto.
PRGHeuristic is instantiated based on this hashfunction, or it can
be an instance of com.verificatum.crypto.PRG. WARNING! This field
is not validated syntactically. -->

<prg>SHA-256</prg>

<!-- Hashfunction used to implement random oracles. It can be one of the
strings "SHA-256", "SHA-384", or "SHA-512", in which case com.
verificatum.crypto.HashfunctionHeuristic is instantiated, or an
instance of com.verificatum.crypto.Hashfunction. Random oracles
with various output lengths are then implemented, using the given
hashfunction, in com.verificatum.crypto.RandomOracle.
WARNING! Do not change the default unless you know exactly what you
are doing. This field is not validated syntactically. -->

<rohash>SHA-256</rohash>
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<!-- Determines if the proofs of correctness of an execution are
interactive or non-interactive. Legal valus are "interactive" or
"noninteractive". -->

<corr>noninteractive</corr>

<!-- Default width of ciphertexts processed by the mix-net. A different
width can still be forced for a given session by using the "-width"
option. -->

<width>1</width>

<!-- Maximal number of ciphertexts for which precomputation is
performed. Pre-computation can still be forced for a different
number of ciphertexts for a given session using the "-maxciph"
option during pre-computation. -->

<maxciph>10000</maxciph>

<party>

<!-- Name of party. This must satisfy the regular expression [A-Za-z][A-
Za-z0-9_ ]{1,255}. -->

<name>Party1</name>

<!-- Sorting attribute used to sort parties with respect to their roles
in the protocol. This is used to assign roles in protocols where
different parties play different roles. -->

<srtbyrole>anyrole</srtbyrole>

<!-- Description of this party. This is merely a longer description
than the name of the party. It must satisfy the regular expression
|[A-Za-z][A-Za-z0-9:;?!.()\[\] ]{0,4000}. -->

<descr></descr>

<!-- Public signature key (instance of subclasses of com.verificatum.
crypto.SignaturePKey). WARNING! This field is not validated
syntactically. -->

<pkey>com.verificatum.crypto.SignaturePKeyHeuristic(RSA, bitlength=2048):
:0000000002010000002d636f6d2e766572696669636174756d2e63727970746f2
e5369676e6174757265504
b65794865757269737469630000000002010000012630820122300d06092a864886
f70d01010105000382010f003082010a0282010100a4b6dc63fe33deb0da65ee6d4a5
cf40890805b2f909983f77bf83527e9d962fc2e283e4a730f530ac30b2ea2d1919596
cf3fddf304497f130a8ae274e954bce48e587fcf568ae7d9f695f97777300358e4
a521c054f68edc1dd170bbf230cdce24c9fdfec9066f2df0074e9af80aab7a13abc5
e9ca817b25314dae9773284dede436da3a162269f33f40d58144890e7430c2209a98f
ec55271ab8b5cae3c57884675a90bd5c169e4e7e0ba7081d55941083f74d0
b82919104244e9361f5e1a8f9cdd14e6be9f8c844ecdc4911bc01c75a3368c75
b4285771126695b8893a255643be81d42a1978aab31f287d0ac302e3f178a0c49439
a935b5a1a0d6ba07cb450203010001010000000400000800</pkey>

<!-- URL to the HTTP server of this party. -->
<http>http://mybox1.mydomain1.com:8080</http>

<!-- Socket address given as <hostname>:<port> or <ip address>:<port>
to our hint server. A hint server is a simple UDP server that
reduces latency and traffic on the HTTP servers. -->

<hint>mybox1.mydomain1.com:4040</hint>

</party>

<party>
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<!-- Name of party. This must satisfy the regular expression [A-Za-z][A-
Za-z0-9_ ]{1,255}. -->

<name>Party2</name>

<!-- Sorting attribute used to sort parties with respect to their roles
in the protocol. This is used to assign roles in protocols where
different parties play different roles. -->

<srtbyrole>anyrole</srtbyrole>

<!-- Description of this party. This is merely a longer description
than the name of the party. It must satisfy the regular expression
|[A-Za-z][A-Za-z0-9:;?!.()\[\] ]{0,4000}. -->

<descr></descr>

<!-- Public signature key (instance of subclasses of com.verificatum.
crypto.SignaturePKey). WARNING! This field is not validated
syntactically. -->

<pkey>com.verificatum.crypto.SignaturePKeyHeuristic(RSA, bitlength=2048):
:0000000002010000002d636f6d2e766572696669636174756d2e63727970746f2
e5369676e6174757265504
b65794865757269737469630000000002010000012630820122300d06092a864886
f70d01010105000382010f003082010a0282010100b459b153dc8c9dcf162dcaef95
b4b4969635b3144fe29d4508fd12c20323098562c1e94e955b47defac41f655335a7f
ec237631a906c033c8b0d57e6f4e83b6f569328c7383f80aaf05fcf39e8984756ec60
e83504780e8d86bc3de38d55cfc876635765be70fce875b25c12f3f6395084180ccff
c3c0a81c699233a9a235ca6fe9cfae2d91e109f4ac60101d76d6b949bff6df53a09c
f8a0f0e44028b2e4d1ef1f65a393390a23aa75f91ae240335d8951b73d4d92053928
e3f06e8b2d08e07d318580ef0028ceae6c51b90fd4bdeb88723b0746e3c73a98d9814
bb1594b00daf7800e8572d649c9b2a15191c0d45efb72ff470478331de6121acf11a0
a8ccd0203010001010000000400000800</pkey>

<!-- URL to the HTTP server of this party. -->
<http>http://mybox2.mydomain2.com:8080</http>

<!-- Socket address given as <hostname>:<port> or <ip address>:<port>
to our hint server. A hint server is a simple UDP server that
reduces latency and traffic on the HTTP servers. -->

<hint>mybox2.mydomain2.com:4040</hint>

</party>

<party>

<!-- Name of party. This must satisfy the regular expression [A-Za-z][A-
Za-z0-9_ ]{1,255}. -->

<name>Party3</name>

<!-- Sorting attribute used to sort parties with respect to their roles
in the protocol. This is used to assign roles in protocols where
different parties play different roles. -->

<srtbyrole>anyrole</srtbyrole>

<!-- Description of this party. This is merely a longer description
than the name of the party. It must satisfy the regular expression
|[A-Za-z][A-Za-z0-9:;?!.()\[\] ]{0,4000}. -->

<descr></descr>

<!-- Public signature key (instance of subclasses of com.verificatum.
crypto.SignaturePKey). WARNING! This field is not validated
syntactically. -->
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<pkey>com.verificatum.crypto.SignaturePKeyHeuristic(RSA, bitlength=2048):
:0000000002010000002d636f6d2e766572696669636174756d2e63727970746f2
e5369676e6174757265504
b65794865757269737469630000000002010000012630820122300d06092a864886
f70d01010105000382010f003082010a0282010100a141e6d91483a9c8f09d1d5fa2e
c849564833b3d5cf7a890dbe39bb46a3e0b569c7e1aad07b3785d95b23bea01af4ec
b03e98b67050a4a4fb6c6e54495c520121e9166f454c5df0610829f45196cffbcb091
a4474dc0ed3d56bae9bec0b31ab29b0311469637ff6782936e8f5ff538afec257da
c3907a44d0b682a943b401b46a45de18fc90dd88e6277b39213362c7f5a8d49b9c69
d9217444616933fc1e6ebc98dbe49677fc7ff7fbbd5ec1cbc00894b33d6147a92e3
c152b5dbe37cfa7acad34f3ee5becb38a906bf393f66f46b8d3d0344aee35c5f3e3d7
fc96c7cc186ed5398b37a79062f3ccb956c60510688d54b3bd9e8a68913d45cd0875
c3c9d138b0203010001010000000400000800</pkey>

<!-- URL to the HTTP server of this party. -->
<http>http://mybox3.mydomain3.com:8080</http>

<!-- Socket address given as <hostname>:<port> or <ip address>:<port>
to our hint server. A hint server is a simple UDP server that
reduces latency and traffic on the HTTP servers. -->

<hint>mybox3.mydomain3.com:4040</hint>

</party>

</protocol>
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D Zero-Knowledge Protocols

In the following protocols we use notation introduced above, i.e., κ and ω are the key width and
width of ciphertexts, and ns, ne, nv, and nr, are auxiliary security parameters for PRG seeds,
batching, challenges, and statistical sampling errors.

Protocol 30 (Proof of a Shuffle).
Common Input. Generators g, h0, . . . , hN´1 P Gq and Pedersen commitments u0, . . . , uN´1 P

Gq, a public key pk P Cκ, elements w0, . . . , wN´1 P Cκ,ω and w10, . . . , w
1
N´1 P Cκ,ω.

Private Input. Exponents s “ ps0, . . . , sN´1q P RNκ,ω and a permutation π P SN such that
w1i “ Encpk p1, sπ´1piqqwπ´1piq for i “ 0, . . . , N ´ 1.

1. P chooses r “ pr0, . . . , rN´1q P ZNq randomly and computes ui “ grπpiqhπpiq.

2. V chooses a seed s P t0, 1uns randomly, defines e P r0, 2ne ´ 1sN as e “ PRGpsq, hands
s to P and computes A “

śN´1
i“0 ueii and F “

śN´1
i“0 weii .

3. P computes the following, where e1i “ eπ´1piq:

(a) Bridging Commitments. It chooses b0, . . . , bN´1 P Zq randomly, sets B´1 “ h0, and

forms Bi “ gbiB
e1i
i´1 for i “ 0, . . . , N ´ 1.

(b) Proof Commitments. It chooses α, β0, . . . , βN´1, γ, δ P Zq and ε0, . . . , εN´1 P

r0, 2ne`nv`nr ´ 1s, φ P Rκ,ω randomly, sets B´1 “ h0, and forms

A1 “ gα
źN´1

i“0
hεii C 1 “ gγ

B1i “ gβiBεi
i´1 for i “ 0, . . . , N ´ 1 D1 “ gδ

F 1 “ Encpk p1,´φq
źN´1

i“0
pw1iq

εi .

Then it hands pB,A1, B1, C 1, D1, F 1q to V .

4. V chooses v P r0, 2nv ´ 1s randomly and hands v to P .

5. P computes a “ xr, e1y, c “
řN´1
i“0 ri, and f “ xs, ey. Then it sets d0 “ b0 and computes

di “ bi ` e
1
idi´1 for i “ 1, . . . , N ´ 1. Finally, it sets d “ dN´1 and computes

kA “ va` α kC “ vc` γ

kB,i “ vbi ` βi for i “ 0, . . . , N ´ 1 kD “ vd` δ

kE,i “ ve1i ` εi for i “ 0, . . . , N ´ 1 kF “ vf ` φ .

Then it hands pkA, kB, kC , kD, kE , kF q to V .

6. V computes C “
śN´1
i“0 ui

L
śN´1
i“0 hi, D “ BN´1

L

h
śN´1
i“0 ei

0 , and sets B´1 “ h0 and
accepts if and only if

AvA1 “ gkA
źN´1

i“0
h
kE,i
i CvC 1 “ gkC

Bv
i B

1
i “ gkB,iB

kE,i
i´1 for i “ 0, . . . , N ´ 1 DvD1 “ gkD

F vF 1 “ Encpk p1,´kF q
źN´1

i“0
pw1iq

kE,i
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Protocol 31 (Proof of a Shuffle of Commitments).
Common Input. Generators g, h0, . . . , hN´1 P Gq and Pedersen commitments u0, . . . , uN´1 P

Gq.
Private Input. Exponents r “ pr0, . . . , rN´1q P ZNq and a permutation π P SN such that
ui “ grπpiqhπpiq for i “ 0, . . . , N ´ 1.

1. V chooses a seed s P t0, 1uns randomly, defines e P r0, 2ne ´ 1sN as e “ PRGpsq, hands
s to P and computes,

A “
źN´1

i“0
ueii .

2. P computes the following, where e1i “ eπ´1piq:

(a) Bridging Commitments. It chooses b0, . . . , bN´1 P Zq randomly, sets B´1 “ h0, and
forms

Bi “ gbiB
e1i
i´1 for i “ 0, . . . , N ´ 1 .

(b) Proof Commitments. It chooses α, β0, . . . , βN´1, γ, δ P Zq and ε0, . . . , εN´1 P

r0, 2ne`nv`nr ´ 1s randomly, sets B´1 “ h0, and forms

A1 “ gα
źN´1

i“0
hεii C 1 “ gγ

B1i “ gβiBεi
i´1 for i “ 0, . . . , N ´ 1 D1 “ gδ .

Then it hands pB,A1, B1, C 1, D1q to V .

3. V chooses v P r0, 2nv ´ 1s randomly and hands v to P .

4. P computes a “ xr, e1y, c “
řN´1
i“0 ri. Then it sets d0 “ b0 and computes di “ bi`e

1
idi´1

for i “ 1, . . . , N ´ 1. Finally, it sets d “ dN´1 and computes

kA “ va` α kC “ vc` γ

kB,i “ vbi ` βi for i “ 0, . . . , N ´ 1 kD “ vd` δ

kE,i “ ve1i ` εi for i “ 0, . . . , N ´ 1 .

Then it hands pkA, kB, kC , kD, kEq to V .

5. V computes C “
śN´1
i“0 ui

L
śN´1
i“0 hi and D “ BN´1

L

h
śN´1
i“0 ei

0 , and sets B´1 “ h0 and
accepts if and only if

AvA1 “ gkA
źN´1

i“0
h
kE,i
i CvC 1 “ gkC

Bv
i B

1
i “ gkB,iB

kE,i
i´1 for i “ 0, . . . , N ´ 1 DvD1 “ gkD
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Protocol 32 (Commitment-Consistent Proof of a Shuffle).
Common Input. Generators g, h0, . . . , hN´1 P Gq, Pedersen commitments u0, . . . , uN´1 P Gq,
a public key pk P Cκ, elements w0, . . . , wN´1 P Cκ,ω and w10, . . . , w

1
N´1 P Cκ,ω.

Private Input. Exponents r “ pr0, . . . , rN´1q P ZNq , a permutation π P SN , and exponents
s “ ps0, . . . , sN´1q P RNκ,ω such that ui “ grπpiqhπpiq and w1i “ Encpk p1, sπ´1piqqwπ´1piq for
i “ 0, . . . , N ´ 1.

1. V chooses a seed s P t0, 1uns randomly, defines e P r0, 2ne ´ 1sN as e “ PRGpsq, hands
s to P and computes A “

śN´1
i“0 ueii and B “

śN´1
i“0 weii .

2. P chooses α P Zq, ε0, . . . , εN´1 P r0, 2
ne`nv`nr ´ 1s, and β P Rκ,ω randomly and

computes

A1 “ gα
źN´1

i“0
hεii and B1 “ Encpk p1,´βq

źN´1

i“0
pw1iq

εi .

Then it hands pA1, B1q to V .

3. V chooses v P r0, 2nv ´ 1s randomly and hands v to P .

4. Let e1i “ eπ´1piq. P computes a “ xr, e1y, b “ xs, ey, and

kA “ va` α , kB “ vb` β , and kE,i “ ve1i ` εi for i “ 0, . . . , N ´ 1 .

Then it hands pkA, kB, kEq to V .

5. V accepts if and only if

AvA1 “ gkA
źN´1

i“0
h
kE,i
i BvB1 “ Encpk p1,´kBq

źN´1

i“0
pw1iq

kE,i
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E Output of vmnv -c

Usage:
vmnv -h
vmnv -c
vmnv -mix

[-auxsid <value>] [-noccpos] [-nodec] [-nopos] [-noposc]
[-width <value>]
<protInfo> <nizkp>

vmnv -shuffle
[-auxsid <value>] [-noccpos] [-noposc] [-width <value>]
<protInfo> <nizkp>

vmnv -decrypt
[-auxsid <value>] [-width <value>]
<protInfo> <nizkp>

vmnv -version

Description:

Verifies the overall correctness of an execution using the intermediate
results and the zero-knowledge proofs of correctness using the Fiat-Shamir
heuristic in the given proof directory. The verification of certain parts
can be turned off to simplify a limited form of online verification and
simplify debugging of other verifiers.

Parameters:
<nizkp> - Directory containing the non-interactive zero-knowledge

proof of correctness using the Fiat-Shamir heuristic.
<protInfo> - Protocol info file.

Options:
-auxsid <value> - Verify that the given auxiliary session identifier

matches that in the proof. This is required when the
auxiliary session identifier in the proof is not
"default".

-c - Print compatibility usage information.
-decrypt - Check proof of decryption.

-h - Print usage information.
-mix - Check proof of mixing.

-noccpos - Turn off verification of commitment-consistent proofs of
shuffles. This is only possible if pre-computation was
used during execution.

-nodec - Turn off verification of proof of decryption.
-nopos - Turn off verification of proofs of shuffles. If pre-

computation is used, this turns off verification of both
proofs of shuffles of commitments and commitment-
consistent proofs of shuffles.

-noposc - Turn off verification of proofs of shuffles of
commitments. This is only possible if pre-computation was
used during execution.

-shuffle - Check proof of shuffle.
-version - Print the package version.

-width <value> - Verify that the given width matches that in the proof.
This is required when the width in the proof is different
from the width in the protocol info file.

46



F Usage Information for vmnv

Usage:
vmnv -h
vmnv -c
vmnv -th
vmnv -mix

[-a <value>] [-auxsid <value>] [-e] [-noccpos] [-nodec] [-nopos]
[-noposc] [-t <names>] [-v] [-wd <dir>] [-width <value>]
<protInfo> <nizkp>

vmnv -shuffle
[-a <value>] [-auxsid <value>] [-e] [-noccpos] [-noposc] [-t <names>]
[-v] [-wd <dir>] [-width <value>]
<protInfo> <nizkp>

vmnv -decrypt
[-a <value>] [-auxsid <value>] [-e] [-t <names>] [-v] [-wd <dir>]
[-width <value>]
<protInfo> <nizkp>

vmnv -sloppy
[-a <value>] [-e] [-t <names>] [-v] [-wd <dir>]
<protInfo> <nizkp>

vmnv -mc
<command>
[<flags>]

vmnv -version

Description:

Verifies the overall correctness of an execution using the intermediate
results and the zero-knowledge proofs of correctness using the Fiat-Shamir
heuristic in the given proof directory. The verification of certain parts
can be turned off to simplify a limited form of online verification and
simplify debugging of other verifiers.

WARNING!
Using this in a real election gives SOME assurance, but it does NOT
eliminate the need for an independently implemented verifier according to
the human-readable description of the universally verifiable proof resulting
from an execution of the mix-net. This document is available at https://www.
verificatum.org.

The main motivations of this tool are to:
(a) debug the description of the universally verifiable proof,
(b) benchmark the running time of verifiers,
(c) serve as a reference implementation to implementors of

their own verifiers, and
(d) check the compatibility of independent verifiers with

the requirements of the description of the universally
verifiable proof.

For this purpose it provides a feature-rich way to print test vectors of
intermediate results and express compatibility.

Parameters:
<command> - Command name of independent verifier. The name may not

contain any "-" characters.
<flags> - A comma-separated list of option flags to be removed

from the compatibility usage information. The following
flags are available:
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-nopre -mix -shuffle -decrypt -width
-nopos -nodec -noposc -noccpos

<nizkp> - Directory containing the non-interactive zero-knowledge
proof of correctness using the Fiat-Shamir heuristic.

<protInfo> - Protocol info file.

Options:
-a <value> - Determines if file based arrays are used or not. Legal

values are "file" or "ram" and the default is "file".
-auxsid <value> - Verify that the given auxiliary session identifier

matches that in the proof. This is required when the
auxiliary session identifier in the proof is not
"default".

-c - Print compatibility usage information.
-decrypt - Check proof of decryption.

-e - Show stack trace of an exception.
-h - Print usage information.
-mc - Print modified compatibility usage information. This can

be used by others to print the usage information that
their own verifiers must provide. Partial implementations
can remove certain functionality using flags.

-mix - Check proof of mixing.
-noccpos - Turn off verification of commitment-consistent proofs of

shuffles. This is only possible if pre-computation was
used during execution.

-nodec - Turn off verification of proof of decryption.
-nopos - Turn off verification of proofs of shuffles. If pre-

computation is used, this turns off verification of both
proofs of shuffles of commitments and commitment-
consistent proofs of shuffles.

-noposc - Turn off verification of proofs of shuffles of
commitments. This is only possible if pre-computation was
used during execution.

-shuffle - Check proof of shuffle.
-sloppy - Check proof of mixing/shuffle/decryption depending on

what is specified in the proof itself using the auxiliary
session identifier and width specified in the proof
itself. WARNING! If these values are not verified using
other means, then this does not constitute a complete
verification.

-t <names> - Print the given comma-separated test vectors. The "-th"
option can be used to list the available test vectors.

-th - List the available test vectors. The names are chosen to
be easily related to the notation used in the document
that describes the non-interactive zero-knowledge proof
of correctness. In particular for programmers that are
familiar with LaTeX.

-v - Verbose output, i.e., turn on output.
-version - Print the package version.

-wd <dir> - Directory for temporary files (default is a unique
subdirectory of /tmp/com.verificatum). This directory is
deleted on exit.

-width <value> - Verify that the given width matches that in the proof.
This is required when the width in the proof is different
from the width in the protocol info file.
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